REFERENCE MANUAL
PART TWO

Lk

LIRS AL L L L P A A

!

BRITISH RROATCASTI NG CORPORATICN
MASTER SERIES MICROCOMPLLLEN

(i

b

)

The BBC Microcomputer
System

Master Series

REFERENCE MANUAL -
Part 2

Part number 0443,002

~ Issuel

January 1986

Within this publication the term ‘BBC’ is used as an abbreviation for ‘British
Broadcasting Corporation’.

© Copyright Acorn Computers Limited 1986

Neither the whole or any part of the information contained in, or the product
deseribed in, this manual may be adapted or reproduced in any material form
except with the prior written approvai of Acorn Computers Limited (Acorn
Computers).

The product decscribed in this manual and products for use with it, are subject
to continuous development and improvement. All information of a technical
nature and particulars of the product and its use (including the information
and particulars in this manual) are given by Acorn Computers in good faith.
However, it is acknowledged that there may be errors or omissions in this
manual. A list of details of any amendments or revisions to this manual can be
obtained from Acorn Computers Technical Enquiries. Acorn Computers
welcome comments and suggestions relating to the product and this manual.

All correspondence should be addressed to:

Technical Enquiries
Acorn Computers Limited
Cambridge Technopark
Newmarket Road
CAMBRIDGE CB5 8PD

All maintenance and service on the product must be carried out by Acorn
Computers’ authorised dealers. Acorn Computers can accept no liability
whatsoever for any loss or damage caused by service or maintenance by
unauthorised personnel. This manual is intended only to assist the reader in
the use of this product, and therefore Acorn Computers shall not be liable for
any loss or damage whatsoever arising from the use of any information or
particulars in, or any omissions from, this manual, or any incorrect use of the
product.

Acorn is a trademark of Acorn Computers Limited
VIEW and ViewSheet are trademarks of Acornsoft Limited
Econet and Tube are registered trademarks of Acorn Computers Limited

This book is part of the BBC Computer Literacy Project.
Typeset by Interaction Systems Ltd, Cambridge.
Cover design concept by Carrods Graphic Design.

First published 1986
Published by Acorn Computers Limited.

=

Contents

Introduction to Part 2

K

BBC BASIC

K.1 Introduction to BBC BASIC
K.2 Variables and operators
K.3 Using filing systems from BASIC

BASIC Keywords

L.1 The syntax of BASIC
L.2 Syntax and usage of BASIC keywords

BASIC Error messages

M.1 Errors encountered in BASIC
M.2 Errors in numerical order

BASIC technical information

N.1 Introduction

N.2 BASIC tokens in keyword order

N.3 BASIC keywords in numerical order of tokens
N.4 The memory map under BASIC

N.5 How BASIC uses the MOS and Filing Systems

The BBC BASIC Assembler

0.1 Introduction to machine code and assembly language

0.2 Information for previous users of BBC BASIC

0.3 Information for users of other 6502 Assemblers

0.4 The 65C12 microprocessor

0.5 Using the assembler

0.6 The BASIC elements of an assembly language program

0.7 The assembly language elements of an assembly language program
0.8 The machine code environment

0.9 Using machine code programs

iii

iv

Assembler Keywords

P.1 Introduction to Assembler keywords
P.2 Table of operation codes

P.3 65C12 addressing modes

P.4 Assembler keywords

Assembler errors

Q.1 Introduction

Q.2 Assembler error messages and symptoms
Q.3 Coding errors

Q.4 Run-time errors

The system editor - EDIT

R.1 Introduction

R.2 Selecting EDIT

R.3 The screen layout

R.4 EDIT commands: using the function keys

R.5 Typing text, Insert and Over modes, simple deleting
R.6 Moving the cursor around the screen

R.7 Moving around the text buffer, scroll margins

R.8 Changing existing text

R.9 Moving, copying and deleting text

R.1¢ BREAK, clearing and restoring text

R.11 Finding and replacing text (elementary)

R.12 Printing text

R.13 Saving and Loading text

R.14 Using filing and operating system commands

R.15 Finding and replacing text (advanced)

R.16 Automatic editing: editor command files (advanced)
R.17 The editor environment

The EDIT text formatter

S.1 Introduction

S.2 Printing to the screen

S.3 Printing on a printer

S.4 The formatter commands

S.5 Command parameters

S.6 Defining the style of the page
S.7 Controlling pagination

8.8 Defining the style of paragraphs

8.9 Defining the style of single lines

S.10 Underlined and bold text

S.11 Using tabs

8.12 Ignoring text and commands

S.13 Linking files for printing

S.14 Printing special codes and translating characters
S.15 Storing and manipulating text and numbers
S.16 Numeric registers

$.17 Macros

S.18 Generating contents lists and indices

T System editor/formatter error messages

T.1 Introductien

T.2 Editor errors

T.3 Text formatting errors

T.4 Dealing with other problems

U The TERMINAL Emulator

U.1 Introduction

U.2 Using the TERMINAL emulator

U.3 Using the function keys with TERMINAL
U.4 The ANSI compatible mode

U.5 ANSI Mode escape sequences

U.6 The BBC VDU driver modes

U.7 Summary of ESC sequences in ASCII order

Index

Introduction to Part 2

Part 1 of this Reference Manual describes the use of the central core of the
machine: the hardware and the software provided to control it. This includes
information such as how to alter keyboard characteristics, produce sounds, use
disc drives and connect peripherals such as disc drives and printers.

This volume describes the software which you will probably use for most of the
time. i.e. the BASIC language, the built-in Assembly language, the System
Editor and the TERMINAL emulator. Instructions for using the VIEW
word-processor and the ViewSheet spreadsheet are given in the VIEW and
ViewSheet Guides respectively.

Like Part 1, this manual has been designed as a reference manual and you
should not expect to read it straight through from the first to the last page.
Different users will be interested in different components of the system and
hence will read different sections to varying depths.

An overview of the machine as a whole is provided in the Welcome Guide
supplied with the computer.

If you want details on a particular subject, you are strongly advised to use the
index to locate entries of interest. Note that where a facility is described in both
Parts 1 and 2, Part 1 will generally cover the more fundamental aspects and do
so to a greater depth; entries in this volume will generally provide details
specific to a particular language or subsystem.

Conventions used in this volume

1

<description>>

[entry]

text lLike this

bold text

italic text

denotes the single key on the keyboard with the
corresponding legend, for example means the
RETURN key.

the < and > enclose text which should not be taken
literally (eg typed) but which should be interpreted
according to the context in which it appears. For
example, LOAD <expression> indicates that the word
LOAD must be followed by a sequence of characters
obeying the rules defined by <expression>. Generally,
definitions of such items will be found in the introduction
to the appropriate section.

the [and] enclose an entry which is optional, the entry
being either a specific sequence of characters or a
description enclosed within < and > (as above). For
example, *EDIT {<filename>>] means that either *EDIT
or *EDIT <filename>> are acceptable.

is used for examples of commands, programs and output
that you might see on the screen.

is used for emphasis

is used for emphasis

K BBC BASIC

K.1 Introduction to BBC BASIC

There have been four versions of BBC BASIC to date, numbered I, I, III and
IV. BASIC I and II were used on earlier versions of the BBC microcomputer.
BASIC III was used on the American version. The version of BBC BASIC
provided with this computer is BASIC IV.

This section briefly outlines the differences between BBC BASIC IV and earlier
versions of BBC BASIC (I, II and III), and the otherwise similar Microsoft
BASICs. It is assumed that the reader is already familiar with one or other of
these versions of BASIC.

Introduction for previous users of BBC BASIC

BASIC IV is very similar to BASIC II, but has been rewritten to make it faster
and provide a number of new facilities. Some of these facilities are simply
extensions to existing commands, others are entirely new to take advantage of
new facilities in the computer.

Enhancement to the ON. . . statement

It is now possible to call procedures in an ON statement, as well as subroutines.
For example:

128 ON in%-129 PROCleft, PROCright, PROCdown, PROCup ELSE PROCerr

The PROC calls have exactly the same syntax as normal procedure calls, ie they
may have parameters separated by commas between brackets:

1248 ON menu? PROCadd(name$,age”} ,PROCdel (name$} ,PROCshow(name$)

The LIST IF construction

The LIST command has been extended to provide a ‘cross-reference’ facility.
The standard LIST command (eg LIST or LIST 10808,2000) may be followed by
the key word IF, which is in turn followed by a string of characters. Only
program lines containing these characters will be listed. The characters
following the IF are tokenised as usual, so keywords may be found. Examples
are:

LIST IF IF list 1F statements
LIST IF TIME list lines with TIME as a function

K.1-1

LIST IF name$(list lines using the array name$()
LIST 100,200 IF var= list assignments to var in lines 100-200

The EDIT command

You can now use the powerful facilities of a text editor to edit a BASIC program
without having to *SPOOL it first, by using the new command EDIT. EDIT on its
own edits the whole program, but can be used with exactly the same arguments
as LIST (including the IF part) to edit only parts of the program.

EDIT converts the program into plain text (effectively by LISTing it into
memory, with a LISTO option of 0) then calls the system editor with that text in
its buffer. Because both the plain text and tokenised versions of the program
are required during this conversion, there is a limit on the size of programs that
can be edited in this way. The largest program that can be edited in this way is
between 9 Kbytes and 15 Kbytes. For details of using the system editor, see
Section R.

Once the program text has been edited to the user’s satisfaction, it can be
converted back to a tokenised BASIC program by using the editor’s ‘return to
language’ command and specifying BASIC as the language. This command
calls BASIC and returns the text in the editor to BASIC as if the text were
being typed in. After this, the edited program is ready to RUN, LIST or SAVE
immediately.

The TIME$ pseudo-variable

This is related to TIME, and provides access to the system’s real-time
battery-backed clock/calendar. It may be used as a function, eg PRINT TIMES,
or as a statement, eg TIME$=""....". For the format of the string used by TIME$,
see the entry in the BASIC keyword section.

The EXT#= statement

In BASIC II, the function EXT# is used to return the length of an open
sequential file. In BASIC IV, you can also assign to EXT#, to change the length
of an open file. This facility can only be used with suitable filing systems (eg
ADFS, Network, but not cassette).

The COLOR statement

In BASIC 1V, the COLOUR statement may be spelt alternatively as COLOR and
still be accepted. It will, however, be listed as COLOUR.

Extensions to the assembler

The microprocessor used in this BBC microcomputer is the 65C12, a CMOS
version of the 6502 processor with an enhanced instruction set. To cater for

K.1-2

this, the assembler built into BASIC IV has been extended to accept the new
instructions. The new mnemonics and addressing modes are described in
Section P.

Assembly listings are now formatted in a more readable manner than in earlier
BASICs, so that labels of up to nine characters (including the initial .) may be
used without disturbing the formatting.

You can use lower case letters throughout the source program if you choose,
such as lda &70,x and equs "fred".

The assembler no longer gets confused by the accumulator addressing mode.
For example, in previous versions ASL ALFRED would be treated as ASL A
followed by the ‘comment’ LFRED. This no longer happens (the same applies to
LSR, ROL, ROR, DEC and INC).

BASIC sets up some addresses pointing to floating point routines. These may
be called from user’s machine code programs. The addresses provided and their
uses are described under the CALL statement.

Improved LISTO formatting

After a LISTO? command, LIST indents REPEATs and NEXTs more neatly, so
that UNTILs lie under the corresponding REPEATs and NEXTs line up with their
FORs.

BASIC also now strips all trailing spaces from input program lines, and if the
current LISTO option is non-zero will also strip leading spaces (between the line
number and the first non-space character on the line). A side-effect of this is
that blank lines such as:

1000
cannot be entered if LISTO is non-zero. (Use 100@: instead.)

Other minor changes

SAVE can take any string expression as its argument such as SAVE a$+b$, and
the indirection operators ! and ? may be used as formal parameters eg
DEF FN fred(!&70).

You may now use ASCII code 141 in comments and strings, for example to
produce double-height characters in teletext display modes:

100 REM<&8D>Big comment
118 REM<R8D>Big comment

{Previously, the RENUMBER and LIST commands could be confused by this code.)

In addition LIST will now list comments that include teletext colour codes as

K.1-3

coloured lines in teletext modes; you no longer need to include a *' just after the
REM.

The AUTO command no longer prints a space after the line number.

Introduction for users of Microsoft BASIC

BBC BASIC IV is an enhanced version of the widely-acclaimed BBC BASIC.
The following describes the main features that make it superior to the
Microsoft and Microsoft-compatible BASICs found on many other popular
machines.

Aids to structured programming

BBC BASIC provides several features that help you write well-structured and
readable programs. The structuring features are:

— The IF... THEN... ELSE... statement

The REPEAT... UNTIL... construct

— The ON... PROC... statement

Multi-line user-defined procedures

— Multi-line user-defined functions

— Procedure and function parameters and local variables

|

The enhancements to aid the writing of readable programs are:

— Long, meaningful variable names
— Automatic indentation of loop structures, if required
— A powerful RENUMBER command

In addition, the usual BASIC constructs such as GOTO, GOSUB, ON...
GOTO/GOSUB and FOR... NEXT are provided.

Access to the operating system

The computer has a powerful machine operating system (MOS) which controls
the the machine’s hardware, such as the screen, keyboard, analogue to digital
convertors, printer etc. The MOS also supports the filing systems used to store
and retrieve information on floppy discs, tapes, cartridges etc. BBC BASIC
provides full access to the MOS and filing systems through statements such as
PLOT, INKEY, ADVAL, OSCLI etc. These are much easier to use and understand
than controlling the machine through obscure ‘PEEK’ and POKE’
instructions.

Access to machine code

Although BBC BASIC IV is currently the fastest eight-bit version of BASIC
available, there are occasions when the extra speed of machine code is needed,
eg when very large arrays have to be sorted quickly. To this end, BASIC

K.1-4

provides a powerful 65C12 assembler which can be used to develop small to
medium-sized machine code applications.

The CALL statement can be used to call machine code routines and pass them
BASIC parameters of any type.

The USR function can be used to call machine code routines, initialising the
6502 registers from BASIC variables on entry and returning the register
contents on exit.

CALL and USR also provide easy access to operating system routines that are not
directly supported by BASIC functions.

Versatile data handling

BBC BASIC supports four-byte integers (rather than the usual two-byte ones)
and five-byte floating point numbers. Strings may be assigned dynamically and
can be up to 255 characters in length. Multi-dimensional arrays of integers,
reals and strings are available, as are arrays of single bytes.

Memory access is provided through the indirection operators ? ! and $. ? has
similar uses to PEEK and POKE (which are neither necessary nor supported in
BBC BASIC). ! is similar but acts on four bytes at once instead of a single byte.
$ acts on strings of characters (this is provided in addition to normal string
variables).

A rich set of numeric and string functions is provided such as trigonometric and
logarithmic functions, string splitting and searching functions.

Print formatting

Numbers may be printed in any of three formats (general, exponent and fixed)
with variable field widths and numbers of significant digits. Integers may be
printed in hexadecimal, and the TR function can be used to convert numbers
to hexadecimal strings, or print-formatted strings.

The PRINT statement has several positional modifiers: ' to print a newline, SPC
to print a number of spaces and TAB to move to a given tab position on the
current line or any given place on the screen.

Error trapping

An ON ERROR facility is provided so that non-fatal errors may be trapped and
dealt with by the program. The facility is supported by the ERR and ERL
functions, which give the error number and error line of the latest error, and
the REPORT statement which prints the latest error message. it is a simple task
to include user error messages which behave in every way like BASIC or MOS
messages.

K.1-5

The BASIC command mode

BASIC’s prompt is > and its presence at the start of a line indicates that BASIC
is ready to accept input. The user may type commands such as LIST and AUTO,
statements to be executed immediately such as PRINT L0G(12), or BASIC lines
to be entered into the program. This last should be preceded by a line number
in the range 0-32767. Single program lines may be deleted typing the line
number followed immediately by [return].

Below is a list of commands and their meanings. Note that a command may not
be executed from within a program, and may not be preceded by another
command or statement. If followed by a statement, that statement will be
ignored.

Command Meaning

AUTO Generate line numbers automatically

DELETE Delete a range of line numbers from the current program
EDIT Call the sytem editor to edit the BASIC program
LIST List the program

LISTO Set LIST indentation option

LOAD Load a BASIC program

NEW Erase the current program

oLD Retrieve a NEWed program

RENUMBER Resequence the program line numbers

SAVE Save the current BASIC program

in addition the following statements can be used within a
program but are most often used in command mode:

CHAIN Load and run a BASIC program
RUN Execute the current BASIC program

K.1-6

K.2 Variables and operators

This section describes the types of data that may be used in BBC BASIC IV
programs and the operators and functions provided to deal with them.

Variable types in BASIC

There are three fundamental types of data in BBC BASIC: real numbers,
integer numbers and strings. For each there is a corresponding variable type:
real, integer and string. There is also a facility for declaring multi-dimensional
arrays of these types. Each variable type has a set of functions and operators
which may operate on it. These are described in this chapter. Note that reals
and integers are largely interchangeable; BASIC automatically converts real
values to integer values and vice versa when required.

Reals

Variables of type real are simply identifiers. An identfier in BASIC is a
sequence of one or more characters in the set {AB.. Y,Z, a,b,.. y,z, 0,1.. 8,9,
—-,£}. The first character may not be a digit. Examples of real variables are:

famount

numvars

A_long Variable_Name
var1234.21z

It can be seen that the special characters — (underline) and £ {pound} act as
extra letters. A restriction on identifiers is that they may not begin with most
reserved words. For example, GETADDR is illegal as GET is a reserved word.
However, reserved words may be embedded in an identifier, as in NAMELIST.
Since reserved words have to be in upper case, identifiers such as getaddr and
even list are legal. The reserved words which are permitted at the start of an
identifier are those which are not normally followed by anything else: CLEAR,
CLG, CLS, COUNT, END, ENDPROC, ERL, ERR, FALSE, HIMEM, LOMEM, NEW, OLD, PAGE,
PI, POS, REPORT, RETURN, RUN, STOP, TIME, TRUE, VPOS. Thus, variables such as
COUNTER and POST are quite legal and distinct from COUNT and POS.

Arrays of reals are simply identifiers followed by subscript(s) in brackets:

counts{char—128)
mat(i%,j%)
numVars{(@)

Note that the array numVars() and the simple variable numvars may both be
used in the same program and are entirely separate entities.

K.2-1

A real constant is a sequence of digits with an optional decimal part and an
optional exponent part. Examples are:

1224

12.34
-0.0000a
123
10293.1234
+3.1E10
-112.32E-4

The sign of the number is taken to be positive if not given explicitly. The
number <n> after the E means ‘multiply the number by 10 to the power of n.”.
The largest real magnitude that can be represented by BASIC is
1.701411834E + 38. An atiempt to generate a value larger than this will result
in a ‘Too big’ error. The smallest real magnitude (ie the number closest to zero,
except for zero itself) is 1.469367939E—39. An attempt to generate a number
smaller than this will yield zero.

Integers

Integer variables are identifiers followed by a percent sign, %. Examples are:

check_sum’
fpennies?
CX%
YCOORD1%

Integer array elements are indicated in the same way as real ones — by
following the variable with a subscript list. Examples are:

Lookup%(i%)
board’{row,col)

Integer constants are written as sequences of between 1 and 10 significant
digits, optionally preceded by a sign. Examples are:

—99
234134112
—532354
+42

Integer constants may also be written in hexadecimal by preceding the
constant part with an ampersand, &. The number itself is a sequence of 1 to 8
significant hexadecimal digits (0,1.. 8,9,A,B.. E F). Examples are:

8D
&FF7FFBD
—855AA1
850000000

K.2-2

There should be no spaces beteen the & and the first digit. Integers are stored
as four bytes in two’s complement form by BASIC. This gives them a range of
—2147483648 to +2147483647, or in hexadecimal &80000000 to &7FFFFFFF.

System integer variables

There are 27 integer variables which are permanently defined, called the
‘system integer variables’. They are A%-Z% and a%.

a% is used to control print formatting (see the PRINT statement). 0% and P%
have special meanings when assembling machine code programs. AZ, C%, X%
and YZ% have special meanings when using machine code programs. The other
system integer variables are completely free for use by the programmer, as are
A%, C%, 0%, P%, X% and Y% if not using machine code.

The main advantage of the system integer variables is that they are not cleared
by CLEAR, NEW, OLD, RUN, LOAD and CHAIN, so they can be used to pass
information between programs. Another advantage is that BASIC accesses
them very quickly, because it knows exactly where they are. It is therefore a
good idea to use these variables when speed is important (such as within a
FOR ... NEXT loop).

Other variables have to be created using an assignment or INPUT statement
and are destroyed by the statements mentioned above (or changing the
program in any way). They are refered to as ‘dynamic’ variables.

Indirect integers

There is another form of integer variable, accessed using the word indirection
operator, ! (pronounced ‘pling’). The format of a such a variable is ! <factor>,
where <factor> is a number, a variable, a function call or an expression in
brackets. Thus some typical indirect integers are:

1870
'ptrZ
'words%(i%)

The value of an indirect integer is the value of the four bytes at the address
specified. Thus !&78 has a value determined by the four-byte, two’s
complement number stored at locations &70-&73. Similarly, !ptr¥% takes ptrX
as an address of a four-byte value at ptr¥ to ptr%+3, and gives the value of this
integer.

There is an extension to the pling notation. It has the form
<variable> ! <factor>. This time, <variable> is a numeric (rea! or integer)
variable. <factor> is as described above, and the value obtained is of the
four-byte integer at location <variable>+<factor> to
<variable>+<factor>+3. It can be seen from this that <variable>! <factor>

K.2-3

is just another way of writing !(<variable>+<factor>). Here are some
examples:

table!1@
vals%'i%
address%! (2*index%)

written in a similar way to arrays of reals and integers, viz:

address1$(i%)
table$(row,col,1)

Strings

String variables may hold strings of up to 255 characters. The shortest length
string is the null string which has a length of zero. The address of a string
variable (as supplied in a CALL parameter block, for example) is actually the

address of its string information block (SIB). This is four bytes long and has the
format:

Address of string text SIB + 0
Bytes allocated to the string SIB + 2
Current length of string SIB + 3

To get the best out of BASIC, it is advantageous to know how strings are
stored. This is particularly important if you are writing large programs that
use many strings, because BBC BASIC does not perform any string ‘garbage
collection’; by declaring strings in a particular way, you can greatly reduce the
risk of running out of storage space.

When a string variable is created (eg by an assignment statement), BASIC sets
aside storage for it. If the initial length of the string is less than eight
characters, this storage (the ‘bytes allocated’ value) is the same as the length. If
the initial length is eight or greater, the bytes allocated will be eight characters
longer than the initial length, up to a limit of 255 characters. So, for example:

a$="123456"
b$="123456790"

will allocate 6 bytes for a$ (the same as its length), and 18 bytes for b$ (eight
greater than its length). By allocating more characters than the initial length,
BASIC can allow the string to ‘grow’ before a new area of storage has to be
found for it. This is important as once the string outgrows its first location and
is moved to a larger area, the storage it occupied previously is no longer
accessible and can’t be re-used.

K24

Consider what happens when a$ and b$% above are both lengthened by two
bytes, eg by the statements:

a%=a%$+"AB"
b$=bs+"AB"

a$ will now occupy eight bytes. As only six bytes were allocated for it when first
declared, the string must be moved to a larger area. The new area will reserve
8+8 bytes for it, as the new length is in the range 8-255. The six bytes
previously occupied by a$ will become inaccessible.

When b$ is re-assigned, its new length is 10. This fits into the 18 bytes
originally allocated to it, so no extra storage is required, and the string does not
have to be moved around.

The only exception is that if a string variable is the latest dynamic variable to
be created, it may grow up to the maximum string length allowed (255
characters) without needing a new space. This is because BASIC knows that as
there is nothing after the stringvariable, it can be extended without having to
move it. Thus if you have a string whose length will vary widely, it is sensible to
make this the last variable created by the program. Be careful though — LOCAL
variables and procedure/function parameters can create variables if they don’t
already exist.

Summarising the above paragraphs, for maximum efficiency the first time you
assign to a string variable you should make its length equal to the maximum
length to which it will grow. You can reset it to null immediately after, of
course. For example:

a$=STRING$(3@,"*")
ag=""

Adopting this policy will:

— speed up program execution as string movement is minimised;
— prevent ‘No room’ errors cause by the constant re-allocation of strings.

String constants are sequences of between 0 and 255 characters, enclosed in
double quotes (”). The upper length limit is also limited by the maximum length
input of line that BASIC will allow: 238 characters.

To include the double quote character in a string, you must type it twice.
Example string constants are:

"A string constant”

"A string '™ with a quote in"
"' : REM a null string

"t REM one double quote

K.2-5

Indirect strings

There is an operator which is analogous to the pling {!) operator. The unary
operator $ has the form $<factor>, and stands for the string at the address
given by factor. These strings consist of zero to 255 characters terminated by a
carriage return (&0D). There is no equivalent form to <variable> ! <factor>,
as it would be impossible distinguish between <real variable> $<factor> and
<string array access>, eg a$(31%+2) would he ambiguous.

Indirect strings have no string inforamtion blocks (SIBs); the address of the
string is the address of first character in the string. Some examples of indirect
strings in use:

$buffer = ""some text"
INPUT “"Type some text :"$&2000
IF $mesgZ="" THEN PRINT "No messages"

When used on the left hand of an assignment statement, $ inserts the required
carriage return after the text. When used to access strings, if there i1s no
delimiting carriage return in the first 256 characters after the address, $ will
give a null string. This provides a simple way of ensuring that there is a valid $
string at the address, viz

$addr=$addr
Note that you cannot place indirect strings in zero page (ie addresses &00-FF).
Arrays of $ strings are effectively arrays of integers or reals preceded by $, eg:

$stringZ{1@}
$vars(i%—8)

To make sure that an indirect string is not using space already used by another
part of the system (such as BASIC variables or program lines), you will usually
reserve space for them with the byte form of DIM. It is the programmer’s
reponsibility to ensure that indirect strings do not change the wrong locations.
For example:

DIM buff 5
$buf f="1234567890""

would have undesired effects as more characters are assigned to the buffer
than were allocated to it.

Operators in BASIC

The types of variable described above may be combined to form expressions.
Expressions consist of variables, constants, operators and functions. Some of
the operators (!, 7 and $) have already been described above.

K.2-6

When BASIC evaluates expressions it uses a series of rules (precedence rules)
to determine which part of the expression to do first. Operator precedence is
simply the way in which, for example, multiplication and division are
performed before addition. This is sometimes learned as BODMAS or some
other acronym at school.

The precedence rules for BASIC expressions are more complex than BODMAS,
because BASIC has many operators. There are seven groups of precedence,
summarised in the following table within which:

— r denotes a real operand;
— i denotes an integer operand;
— s denotes a string operand.

Group 1 Accepts Yields Meaning

— ri ri Unary minus

+ ri ri Unary plus

NOT ri i Logical NOT
Function calls sri sri Built-in and user

O sri sri Brackets

2% ri si Indirection operators
Group 2

B ri ri Exponentiation
Group 3

* ri ri Muliplication

/ ri ri Division

DIV ri i Integer division

MOD ri i Integer remainder
Group 4

+ sri sri Addition (concatenation)
- ri ri Subtraction
Group 5

= sri sri Equal

< sri sri Not equal

< sri sri Less than

> sri sri Greater than

<= sri sri Less than or equal
>= sri sri Greater than or equal

K.2-7

Group 6

AND ri i Logical AND
Group 7

OR ri 1 Logical OR
EOR ri 1 Logical EOR

Operators in the lower-numbered groups have higher precedence (are acted
upon first), and operators in the higher-numbered groups have lower
precedence. The ‘types’ are the type of operand that the operator (or function)
can accept. ‘s’ 1s string, ‘r’ is real and 9’ is integer. Where i’ appears on its own,
‘r’ will be accepted and converted to an integer (by truncation) if possible.

Operators in the same group are evaluated left to right, so a—b+c is treated as
(a—b)+c rather than a—(b+c). If you learn to apply the precedence rules given
in the table, you will rarely need to use brackets. For example, a long
conditional expression such as:

Length>=1 AND length<=10 OR NOT checking
has the intuitive bracketed meaning of:
((length>=1) AND (length<=1@)) OR (NOT checking)

There are occasions, however, when brackets are needed to give the desired
result. An example is when checking the contents of a two-byte value using !

IF (!'&20E AND &FFFF) = mywrch?% THEN

The brackets are needed as otherwise the expression would be treated as:
120E AND (&FFFF = mywrch?)

which is not quite the same thing!

Below is a brief description of what each operator does for the various operand
types.

Group 1

- Negates the value of the numeric object following it.
+ No action.

NOT Inverts the state of each bit in its integer operand.

Function calls See keywords section.
) Give the enclosed expression a high precedence.

b, 5,7 See the descriptions above.

Note: Expressions that only use operators in group 1 are known as factors.
Such expressions can be used as the arguments to any of the BBC BASIC
functions that take a single parameter.

Group 2

~

Group 3

*
/

D1V
MOD

Group 4

Raises its left operand to the power of its right operand.

Produces the product of its numeric operands.
Produces the quotient of its numeric operands.
Produces the integer quotient of its numeric operands.

Produces the remainder after its left operand has been
divided by its right one. A% MOD B% = A% — B¥%*(A%Z DIV BZ).

Produces the sum of its numeric operands.

Produces the right operand joined to its left operand, eg
IIABCDII+II1234II = IIABCD1234II‘

Produces the difference of its numeric operands.

Produces TRUE if its operands are equal, FALSE otherwise.
Produces TRUE if its operands are not equal, FALSE otherwise.

Produces TRUE if its left operand is less than the right one,
FALSE otherwise.

Produces TRUE if its left operand is greater than the right
one, FALSE otherwise.

Produces TRUE if its left operand is less than or equal to the
right one, FALSE otherwise.

Produces TRUE if its left operand is greater than or equal to
the right one, FALSE otherwise.

Note: String comparisons are done on a character by character basis, using the
ASCII code of the characters for comparison. For example, these conditions are

TRUE:

K.2-9

uau > “un

llAScll:llAScll

IIABCII < llabcll

llzll > IIZZZZII

Groups6and 7

AND Combines the two integer operands by logically ANDing
corresponding bits.

OR Combines the two integer operands by logically ORing
corresponding bits.

EOR Combines the two integer operands by logically EORing

corresponding bits.

K.2-10

K.3 Using filing systems from
BASIC

BBC BASIC provides commands, statements and functions which access the
filing system directly. Because the filing systems have been designed to present
a uniform software interface, the same program can normally work with, say,
dise, cassette or ROM filing systems. The main differences in operation are
those forced by the restrictions of the medium used. For example, cassette files
are ‘serial’ and cannot support random access, while ROMs are ‘read-only’.

Filing systems are used by executing two distinctly different types of command:
filing system commands in the current language, and filing system =*
commands. Language commands can only be used while the language is
selected as the current language and are designed to make it easy to perform
language-oriented tasks such as saving and loading programs and data. Filing
system * commands (which may be obeyed directly by the filing system or
indirectly, via the MOS) can be used with any language, but are not so good at
performing language-oriented tasks.

In this chapter, the language commands only are described in detail. Some of
the more common filing system * commands such as *L_0AD are mentioned
briefly, but for detailed information you should refer to Sections G-J.

Whole-file operations

These operations act on whole files, whether they are BASIC programs or
machine code files.

Loading and saving BASIC programs

The BASIC SAVE command uses a filing system call, OSFILE &00, to save the
BASIC program currently in memory onto the medium. An example is:

SAVE "stats'

which will save the current program under the name ‘stats’. The start address
is set to PAGE, the end address (ie the location after the last byte to be saved) is
set to TOP. BASIC sets the high-order bits of the load address to the high-order
address of the processor it is running on. This enables you to tell if a file was
saved from the I/O processor or a co-processor. For example, if there was a
BASIC file called prog1, its information might look like this:

prog? FFFFOEGD FFFFBO23 OPAPA777 DERG23

This indicates that prog? was saved on an I/O processor-only machine with

K31

PAGE set to &E00. The execution address (FFFF8023) is not significant for
BASIC programs. The length (00000777) is in hexadecimal, and is equal to
TOP-PAGE.

Filing systems do not distinguish between types of files, apart from requiring
directories to have a certain format. BASIC files are no exception, so they can
be treated as any other; for instance they can be opened for reading or writing,
*SAVEd or *LOADed. This latter property can prove very useful when developing
programs, as illustrated below in ‘Merging BASIC programs’.

The BASIC LOAD command uses OSFILE &FF. The load address is supplied as
the current value of PAGE: the file’s own load address is ignored. An example is:

LOAD "stats''

which will load the program called stats at PAGE. After the program has
loaded, BASIC checks that it is a valid BASIC program (as it does when END is
executed), and if it finds an error, reports it as a ‘Bad program’. Note that you
may be able to RUN a ‘bad’ program, even if you can’t LIST it.

BASIC does not check the length of a program before loading it (as this cannot
be done on the cassette filing system) so a program may be ‘bad’ because it is
too large to fit into memory. This is most likely to happen when loading a
program that was written on a co-processor using HIBASIC into the 'O
processor, or loading a program written in shadow mode when in a non-shadow
mode. A program may also be ‘bad’ because it is not a BASIC program.

LOAD is like NEW in that it removes all of the current program’s variables, apart
from the system integer variables. If the LOAD is unsuccessful (ie the program
cannot be found), the old program and its variables remain intact.

The CHAIN statement (which can also be used in a program) acts exactly as LOAD
followed by RUN, except that if the program is ‘bad’, BASIC will not RUN it.
Under ADFS, both LOAD and CHAIN allow ‘wildcards’ in the filename, for
example:

CHAIN "BM&"

will load and run the first program in the current directory that begins with the
letters BM. (The ‘first’ program being the first one in alphabetical order.)

SAVE, LOAD and CHAIN all allow general string expressions as their arguments.
This can be used to ensure that a program is always stored using the same
name, by placing a line in the program such as:

10000 DEF FNNM="sort1"
and always saving the program while you develop it with the command:

SA.FNNM

K.3-2

Merging BASIC programs

One of the strengths of BBC BASIC is the way it enables you to build up
libraries of procedures, functions and other small programs to use as ‘building
blocks’ when writing programs. To use programs from such a library, you need
to be able to add them to a BASIC program in memory, There are two ways of
doing this.

The first method involves *LOADing a program file directly onto the end of the
program in memory. This is a pure ‘append’, as the second program is literally
attached to the end of the first one.

The second method involves using text versions of programs and facilities such
as EDIT, *SPOOL and *EXEC. This is a true ‘merge’, as the second program is
added to the first as if it were typed at the keyboard with the first program
already loaded.

Suppose you want to append a file called shellSort to the current program.
PRINT"TOP-2

displays the address of the end of the last line of the current program, for
example:

1A36
This tells you where to place the new program.

#L0AD shellSort 1A36
END

puts the second program file at the end of the current program. The END
statement ensures that BASIC updates its version of TOP to the end of the
merged program. (LIST will also do this.)

To simplify this task, you can program a function key to do it all for you:
*KEY@ INPUT''File name: "f3$:0SCLI"LOAD "'+f$+" "+STR3S “(TOP—2):ENDIM

This technique also works when there is no program in the machine already, so
it can be used to load as well as append.

One small problem with this appending technique is that if the appended
program has line numbers that overlap those in the original one, you get
programs looking like this:

2100 REPEAT

2110 UNTIL INKEY-99

800 DEF PROCshellSort(first,last)
810 REM....

If there are no GOTOs, GOSUBs or other statements that use line numbers in the

K.3-3

program, the simple solution is to RENUMBER it. If there are any of these
statements, RENUMBER will probably get confused; the best solution is to make
sure that files which you append have very high line numbers (remember that
the upper limit is 32767).

An alternative technique, which is a true ‘merge’ rather than the ‘append’ of
the first method, is to convert library files into text rather than tokenised
programs, then merge them into programs you develop using the system text
editor or *EXEC.

To create a text version of a BASIC program, load it into BASIC then use EDIT.
For example, to convert a BASIC program called quickprog into a text file
called quicktext:

*BASIC (if not already in BASIC)
LOAD "'quickprog"
EDIT

The EDIT command converts the BASIC program into a text file and enters the
system editor with this text in its buffer. Now use f3 (SAVE FILE) to save the
contents of the buffer as file quicktext.

If you get the ‘No room at line nnn’ message, change to a shadow display mode
and try again. If you still get the error message, the library program is too large
to convert to text using EDIT; use *SPOOL instead, as follows:

*SPOOL quicktext
LIST
*SPOOL

The first line opens a *SPOOL file named quicktext; any characters sent to the
screen after it will be put into the text file called quicktext. The LIST
command works as usual, but the listing is not just displayed but also sent to
quicktext. The second *SPOOL closes quicktext and stops spooling so that
displayed output will only go to the screen again.

When you have converted the library program to text, load the ‘main’ program
that you want to merge it into, for example:

LOAD "dBase"

To merge in the text file, type:

*EXEC quicktext

(If you are using the cassette filing system, remember to rewind the tape first.)

*EXEC reads the contents of the named file and ‘types’ them just as if you were
typing the same characters yourseif. The screen displays the contents of
quicktext and BASIC thinks it is getting lines from the user, so it inserts them

K.3-4

into the BASIC program as usual. At the end of quicktext, *EXEC stops and
input reverts to the keyboard.

To avoid having to do the first stage (converting the library program to text)
each time, you could save all library files as text (from EDIT) rather than as
BASIC programs (using SAVE).

Machine code files

When a BASIC program calls a machine code routine, it only needs the object
program in memory, not the source program. The usual way of doing this is to
assemble the routine with another program, using the ‘assemble at P% for 0%’
assembly option (see Section O) and save the object program in a file with the
appropriate execution and re-load addresses. When the routine is needed, the
file containing it is loaded into the appropriate place.

For example, suppose there is a machine code routine which is about two pages
(512) bytes long. A convenient place to put it is at the top of RAM in shadow
mode (&7E00). HIMEM should be moved down first to accommodate and protect
the code, The body of the program to assemble the code will look like this:

980 *SHADOW
990 MODE 3
1800 DIM code &200 : object=R&7EAB : REM Assuming a shadow mode
1010 FOR pass=4 TO 6 STEP 2
1920 PZ=object : 0%=code
1038 [OPT pass
1040 \The source program
1050 .entry
1355 \The rest of the source
1060 1
1878 NEXT pass
1880 OSCLI"SAVE cbjProg "+STR$ “code+" "+STR$ “0%+'" '""+STR$ “entry+"''+S
TR$ “object

This uses the long form of the *SAVE command:
*SAVE <name>> <start addr> <end addr> <execution addr) <reload addr>

To use the routine in another program, use a sequence of instructions like this:

300 HIMEM=R7EQ@

310 *LOAD objProg 7EGB
320 CALL &7€PQ,dataptr,in%
33@ REM and so on

The load address doesn’t have to be specified as it was set to &7E0Q0 by the

K.3-5

assembly program, but it is safer to make it explicit. If the object had to called
only once, and with no parameters, the following three lines would suffice:

30P HIMEM=K7EQR
310 */objProg
32@ HIMEM=E3000

Sequential files

Data used in BASIC programs is lost when the machine is turned off. To
provide a permanent record of variables, use the ‘sequential files’ provided by
filing systems.

A sequential file can be regarded as an array of bytes, similar to the arrays
dimensioned by the byte form of the DIM statement. The difference is that files
lie on a medium such as disc or tape, while arrays are in the computer’s main
memory. To read data from a sequential file you must ‘open’ it, which reads a
small section of the file into an area of the computer’s main memory, known as
a buffer. This provides rapid access to, usually, 256 bytes of the file. An open
sequential file may be pictured as below:

START OF PTR END OF
FILE *) FILE
| r 256 BYTES] I
s 7" A/ EXT

BUFFER IN RAM

PTR is the sequential pointer which marks the ‘current location’ in the file. It is
set to 0 on opening a file, so read and write operations start at the begining of
the file. PTR is discussed in detail later. EXT means ‘extent’ — the length of the
file. There is a BASIC function to return this value for an open file. Suitable
filing systems (not the CFS or RFS) may alter the length of a file by assigning
to EXT or PTR.

BASIC supports sequential files with various statements and functions. Before
it can use a file, the file must be ‘opened’. When this is done, the user may read
characters from the file, write characters to the file, or change parts of an
existing file. There are three functions in BASIC used to open files:

OPENIN — Open a file for input only. The file must exist already
OPENUP — Open a file for input and output. The file must exist already
OPENOUT — Open a file for input and output. The file need not exist already

K.3-6

All three take a filename as an argument and return a ‘channel number’. This
is used in all subsequent dealings with the file. The value of the channel
number depends on the filing system, but is always in the range 1-255. If an
OPEN function returns a value of 0, the file could not be opened because, for
example, a file specified to OPENIN does not exist already. Here are some
examples of files being opened:

c%=OPENIN("'datal")
outChan%=0PENOUT ("'$.dat .newData'")
file=OPENUPdata$: IF file=@ THEN PRINT "Can't find ";data$:END

The result of OPENIN, OPENUP and OPENOUT functions should always be assigned
to a variable for later use. Note that OPENOUT immediately overwrites any
existing file with the specified name, so it should be used with care.

Single-byte file operations

Once a file has been opened, you can write to or read from it, using the BPUT
statement and the BGET function. For example, the following program prints
the contents of a text file:

100 REPEAT

11@ INPUT "File name: "file$

1280 file=OPENIN(file®)

130 UNTIL file

140 REPEAT

150 char=BGET#f] le

160 IF char=8D THEN PRINT ELSE IF char<&2@ THEN PRINT"."; ELSE PR
INT CHR$(char);

170 UNTIL FALSE

This program emulates *PRINT. The first repeat loop asks for a filename from
the user, until it finds a file with the name given. The second loop repeatedly
gets characters from the file and prints them out. Control characters are
printed as . except for carriage return (&0D) which does a newline. Other
characters are printed as themselves.

The BGET function acts in a similar way to the GET function; it returns a
character code between 0 and 255, but instead of using the keyboard, it uses
the file whose channel number is given in its argument. In common with the
other filing system keywords that take a channel number, BGET is always
followed by a hash, #.

This program is not very well-designed; when it reads to the end of the file (all
of the characters in it have been read and printed), it carries on trying to read
characters and makes the filing system generate an error. To help you
overcome this type of problem, BASIC provides a function called EOF. This

K.3-7

returns TRUE if the last character of the file has been read, and FALSE
otherwise. Thus to make the above program end correctly (without an error),
line 170 should be:

17@ UNTIL EOF#file

In addition, after a program has finished with an open file it should close it.
This frees the area of memory set aside for its buffer, so that another file may
be opened. All filing systems have a maximum number of files that may be
open at once, such as two for the CFS and 10 for the ADFS. Another line should
be added to the ‘PRINT’ program:

180 CLOSE#file

Closing files after use is particularly important if they have been written to
rather than just read from, as closing them ensures that the buffer is copied
onto the file medium so that the file is kept up to date.

The BPUT statement writes a single byte to a file. The file must have been
opened for update or output. For example, the program below emulates the
*BUILD command provided by the operating system:

1800 REPEAT

1018 INPUT "File name: "file$

1820 file=0PENOUTf1ile$

1830 UNTIL file

1848 ON ERROR CLOSE#file: PRINT''Escape’: END
1858 Line=1

18680 REPEAT

1970 PRINT RIGHTS("P@0''+STR$(line), 4)" ";
1088 INPUT LINE '"in$

1298 in$=in$+CHRS(&AD)

1188 FOR i%=1 TO LEN(in$)

1110 BPUT#f1i Le ,ASC(MID$(in$,i%))

11280 NEXT %

1130 Line=line+1

1140 UNTIL FALSE

The first four lines open the file for output. As mentioned above, this will delete
any file of the same name already present. Line1040 sets the ON ERROR action
for when the user presses to exit the program. Line1050 initialises the
line number printed at the start of each input line. The second REPEAT loop
prints the line number, gets a line of text, adds a carriage return to the end, and
‘writes the lines one character at a time to the file. This continues until
is pressed. As shown, BPUT takes two arguments; the channel number, followed
by the code of the character to be written to the file.

K.3-8

BPUT, in common with the other sequential file statements and functions, has
two errors associated with it. Missing # means that the # character after the
keyword was omitted, and Channel means a channel number has been
specified that does not correspond to a file opened for input.

Writing and reading BASIC variables

BGET and BPUT are useful when processing text files, but are not so good for
dealing with the information that BASIC handles — variables and constants. To
‘handle these, there are special forms of the PRINT and INPUT commands:
PRINT# and INPUT#. These allow you to store constants and variables of any
type in files, then read them back later.

As an example of using these commands, the following program takes a list of
ten names and ages from the user and places them in a file called ages:

1080 ages=0PENOUT ("'ages'')

1810 FOR %=1 TO 1@

1820 PRINT "Name, age number ";i%": '";
1838 INPUT '"''name$,age¥

1040 PRINT#ages ,name$,age%

1058 NEXT 1%

1068 CLOSE#ages

Using PRINT#, expressions that would normally be printed on the screen are
sent to the file instead (BASIC actually uses the same routine as BPUT to do
this). PRINT# may only be followed by a list of expressions; you cannot use print
formatters such as TAB with it.

After ten names and ages have been saved, the example program closes the file
it has written to. T'o get the information back from the file, a program such as
the following would suffice:

200 ages=OPENIN(''ages')

2019 FOR i%=1 TO 10

20280 INPUT#ages ,name$,age’

2030 PRINT "Name: 'name$;TAB(20)"Age: ";age%
2040 NEXT 1%

2050 CLOSE#ages

INPUT# causes the variables to be read from the file specified rather than from
the keyboard. (BASIC uses the same routine as for BGET to do this). The usual
INPUT prompts and print formatters are not allowed with INPUT#.

Although the examples above use the same variables in the PRINT# and INPUT#
statments, there is no need for this. Indeed, as PRINT# can store constants, such
a requirement would be impossible.

K.3-9

BASIC automatically converts reals to integers and vice versa where required,
so data written with the line:

PRINT#file,1.11,324,8123,1.212E2
may be read back using:
INPUT#f1i Lle,a%, real ,fred%,int%

Note however that it is illegal to read a string into a numeric variable, or vice
versa, So:

PRINT#file,"A string followed by ' ,anumberZ
may not be subsequently read back in with:
INPUT#f1 le ,anumber’ ,astring$

This would produce a Type mismatch error.

Variable formats in files

When BASIC puts data into a file using PRINT#, it does not simply write the
characters that would appear on the screen if the same data were PRINTed. (If
you want to do this, use a *SPOOL command followed by normal PRINT
statements.) Instead, a more compact format is used, in which integers, reals
and strings are written as a ‘type byte’, followed by the data proper. The
formats are:

Integer

Type byte of &40 (64) followed by the four bytes of the integer, most significant
byte first.

Real

Type byte of &FF (255) followed by the four bytes of the mantissa (least
significant byte first) followed by the exponent. The internal representation of
real variables is discussed in chapter L.2 under CALL.

String

Type byte of &00 followed by the length of the string (one byte) followed by the
characters of the string in reverse order.

The lengths of the items are therefore 5 for integers, 6 for reals and
LEN(string$X+2 for a string. This information is mainly important when using
direct access files.

The program below reads through a file in the format created by PRINT# and
prints the types of the data it finds. For integers and strings (but not reals), it
also prints their values:

K.3-10

1000 file=0PENIN"printFile”

1818 REPEAT

1028 type=BGET#f1i le

10209 IF type=@ THEN PROCstr ELSE If type=848 THEN PROCint ELSE PRO
Creal

1048 UNTIL EOF#file

1050 CLOSE#file

1068 END

1070

2080 DEF PROCstr

2010 Len=BGET#file

2020 str3=""

203 IF len=@ THEN 2870

2040 FOR %=1 TO len

2059 str$=CHR$(BGET#f1ile)+str$
2060 NEXT

2070 PRINT "String (len=";len")"TAB(20)str$
2080 ENDPROC

2090

30P@ DEF PROCint

3013 FOR 1%=3 TO @ STEP -1

3020 1%2870=BGET#f 1 le

3030 NEXT

3P4@ PRINT "Integer"TAB(20);'!&70
3@50 ENDPROC

3060

4900 DEF PROCreal

4013 FOR i%=1T0 5

4020 dummy = BGET#file

4@30 NEXT

4040 PRINT '"Real"

4@5@0 ENDPROC

The sequential pointer

The file handling discussed until now has been entirely ‘serial’ in nature: the
*PRINT type program reads characters from the start of the file and carries on
until it reaches the end, while the *BUILD type program creates a new file and
adds characters to it until the user presses [escape] Similarly, the PRINT#
statements shown until now have simply added data to the file. This method of
file access is supported by all filing systems (with the obvious exception of
writing to the read-only filing systems such as ROM).

The ADFS and (optional) Network filing systems support a more sophisticated
access method known as ‘direct’ or ‘random’ access. Associated with each open

K.3-11

file is an entity known as its sequential pointer. If a file is regarded as the array
of bytes mentioned above, then the sequential pointer is the subscript of the
current element. The sequential pointer is accessed in BASIC through the PTR
pseudo-variable. When a file is first opened, its pointer is set to zero, and the
line:

PRINT PTR#file

will print 0. Every time a byte is written to or read from a file, PTR for the file is
increased by one. Thus after:

FOR i%=1 TO 18 : BPUT#file,i% : NEXT

PTR#fi le will be set to 10. It is also possible to assign to PTR, so that reading or
writing occurs at a particular position.

The sequential pointer is most useful when accessing a file using PRINT# or
INPUT#. It is often convenient to treat the file as a sequence of records, where a
record is a collection of related fields. A field is a value, such as a string or
number. Consider a very simple stock control situation. The stock file would be
made from records, each of which might consist of a part number, a description,
a quantity and a price. To allow you to access any record quickly by its part
number, you must have created the file using a fixed length for each record. To
read the appropriate record, multiply the record number (which is the same as
the part number) by the fixed record length, then set PTR to this value, and
you will be ready to read or write that record.

If we have a maximum description length of 15 characters, the record length
will be (15+2) + 5 + 6, remembering that stringsa take up their length plus 2
bytes, integers (the quantity) take 5 bytes and reals (the price) take 6. The
record length is therefore 28 bytes, and to access record (part number) n, PTR
must be set to 28*n. The program below uses these figures to give a very simple
stock control database:

1080 REM "Stock Control"

1818 recLen=28:maxRec=100

18280 MODE 135

1830 13 Lle=OPENUP(''stock")

1848 IF file=B THEN PROCcreate(“stock' ,maxRec*recLen):file=OPENUP(''st
ock'™)

1060 REPEAT

1878 CLS

18880 PRINT'''"1. Enter a record”''"2. Examine a record"''"3. Quit"
1898 PRINT''"Which one (1-3) "

11080 REPEAT

1110 INPUT TAB(16,1@) ,choice

1128 UNTIL choice>=1 AND choice<=3

K.3-12

1138

1148 UNTIL choice=3
1158 CLOSE#file

1168 END

1170:

1180 DEF PROCenter
1198 REPEAT

1200
1210
1220
1238
1240
1250
1260
1278
1280
1299
1300

CLS
REPEAT

INPUT TAB{(@,3)"Product number",pn%
UNTIL pnZ>=@ AND pnZ%<=maxRec
IF pn%=@ THEN131@
INPUT TAB(B,5)"Description” ,ds$
ds$=LEFT$(ds$,15)
INPUT TAB(@,7)"Quantity” ,gnX
INPUT TAB{@,9)"Price" ,pr
PTR#f i Le=pnZ%*recLen
PRINT#fq le ,an%,ds$,pr

1318 UNTIL pn%=0
1328 ENDPROC

1330:

1348 DEF PROCexamine
1358 REPEAT

1368
1370
1380
1399
1499
1410
1420
1430
1440
1450
1460
1478
1480
1490

CLS
REPEAT
INPUT TAB(B,3)"Product number'',pn%
UNTIL pn%>=@ AND pn%<=maxRec
IF pn%=0 THEN150@
PTR#f i Le=pn%*recLen
type=BGET#file

IF type<>&4@ THEN ds$="Undefined' :qn%=0:pr=B:G0T01580

PTR#f i Le=pnZ*recLen
INPUT#f1i Le ,qn%,dsS ,pr
PRINTTAB(@,5)"Description:"TAB(28)ds$
PRINT'"Quantity:"TAB(2@) ;qn%
PRINT'"Price:"TAB(20);pr

wait=GET

1560 UNTIL pn%=0
151@ ENDPROC

1520:

1530 DEF PROCcreate(file$,length)
1548 1 le=OPENOUT(file$)
155@ PTR#file=length

IF choice=1 THEN PROCenter ELSE IF choice=2 THEN PROCexamine

K.3-13

1568 CLOSE#file
1578 ENDPROC

The call to PROCcreate is only made if a file called stock does not exist already.
If it does, it is simply opened for update. The program’s main loop prints a menu
and performs one of three tasks; enter a record, examine a record or quit. The
examine procedure detects if a valid item is at the record specified by testing if
the first byte of the record is &40 (the integer type byte). If it is, the record is
valid and its contents are printed, otherwise a dummy value is assigned and
that is printed. PROCcreate simply opens for output the file named in file$,
gets its pointer to Length (which will fill the file from position 0 to Length—1
with zeros), therrcloses it again.

File access summary

OPENIN

Open for input. In general, this returns a channel number for the file specified,
or 0 if no such file can be foeund. The position of the character to be read may be
set by PTR#=<expression>. The PTR may not be set at or past EXT, and the file's
length may not be changed using EXT#=<expression>.

In the CFS and RFS, PTR and EXT are not valid. The CFS never returns 0 as it
waits for the file to be found before OPENIN returns. The RFS may return zero.

OPENUP

Open for update. Returns channel number or zero. The file may be lengthened
by setting PTR or EXT, and shortened by setting EXT. BPUT and BGET may be
used.

In the CFS and RFS, OPENUP acts exactly as OPENIN.

OPENOUT

Open for output. Returns channel number or zero. The file is created if it
doesn’t exist already, or will be overwritten if it does. The ADFS allocates 64K
(using the same mechanism as *CREATE) when a file is opened for output. The
file may be lengthened by setting PTR or EXT, and shortened by setting EXT.
BPUT and BGET may be used.

The CFS never returns zere. PTR and EXT are not valid. In the RFS, OPENOUT
may not be used.

K.3-14

'

L BASIC Keywords

L.1 The syntax of BASIC

This section describes each of the BASIC IV keywords in detail. It gives the
format of keyword (its syntax) any arguments it needs and what result it
returns (for functions). Also given are examples and any other points which are
relevant to the use of the keyword.

Introduction to BASIC syntax

A BASIC program is a set of BASIC lines. A line consists of an (integer) line
number in the range 0-32767 followed by one or more statements. When a line
is being entered, it may be up to 248 characters long. A line without a line
number is executed immediately; it may be a command (eg LIST) or
statement(s). Statements on a single line are separated by colons.

Here are some examples of legal BASIC syntax:

18 PRINT "Hello, world"
FOR 1%=32 TO 126:VDU i%:NEXT
LIST 190

Here are some examples of illegal BASIC syntax:

10 LIST (A command in a program line)
20 PRUNT 1 (An incorrectly spelled keyword)

Note that the syntax of program lines is not checked until they are executed.
Thus the illegal lines above would be accepted when typed in, but would
produce a ‘Syntax error’ when the program was RUN,

Most BASIC keywords may be abbreviated to the first few letters followed by a
dot. For example, ENDPROC may be typed as E. . When the program is LISTed,
the full spelling is produced. The minimum abbreviation for each keyword is
given in the next chapter, and these are summarised in chapter N.2,

Spaces are optional in most circumstances, but are often used to make the
program easier to read. One place where spaces are required is when a keyword
follows an identifier, eg DEF PROCfred PRINT..., not DEF FNfredPRINT.

The ‘marker’ keywords DEF and DATA must be the first keywords on the line.
Where possible, plain English is used to describe the actions of the keywords.

L.1-1

However, formal syntax descriptions are also used because they are more
precise and compact. The notation used in these syntax descriptions is as
follows.

Words in upper case are the keywords themselves. Most punctuation, such as ,
and = also stands for itself. The exceptions are square brackets and angled
brackets. Square brackets, [and], enclose items that are optional, eg:

STR$[~]<factor>
LOCAL {<variable>] [,<variable>] etc

In the first example, the tilde may be omitted. In the second example, the first
variable and the variables following it are optional.

When an item is followed by etc, the item may be repeated an arbitrary number
of times (including zero).

Angled brackets < and > are used to delimit parts of the syntax which are not
to be taken literally, but stand for a class of objects. An example is
<relational> which means ‘any relational expression’. The classes used are as
follows:

<factor>

This means an expression which is a single unit, ie a variable reference, a
constant, a function call (user-defined or built-in), or a general expression
enclosed in round brackets. The argument of a single-parameter function is
always a <factor>>, so examples of function calls are:

SINRAD45
LENAS
STR$1234
EXP-A%
TAN(ANG%+45)

It can be seen that brackets are only needed around arguments if they contain
more than one ‘element’ or, as in the case of RND, if the argument is optional.

<expression>

This is any valid numeric or string expression. The type of the expression
required is always given in the explanation of the keyword. Where more than
one expression is required, <expressionl>>, <expression2>> is sometimes used
to make the identification of each expression easier.

In general, wherever an integer is required, BASIC will accept a real, as long as
it can be converted into an integer. This means the real must be in the range
—2147483648 to +2147483647 to be used as an integer. Moreover, if an integer
in the range, say, 0-255 is required, BASIC will accept any integer and only use

L1-2

e

the least significant byte. This is mostly the case when BASIC uses the
operating system. Only enough bytes will be taken from an expression to
satisfy the requirements of the MOS. A full list of the ways in which BASIC
uses the operating system is given at the end of Section N.

<relational>

This is an expression that contains operators of higher precedence than the
logical operator under discussion. Thus in the syntax:

<relational> AND <relational >

the relational expression may contain any operator except AND, OR and EOR, as
these are the lowest precedence operators. To use one of these operators (eg OR)
in an operand, you will need brackets:

(a>b OR c<d) AND f<>1

For a full description of operator precedence, see Section K.

<operand>

This is used to stand for the operands of *, /, DIV and MOD. It may be any
expression containing operators of higher precedence than these operators.
This means <factor> or <factor> "~ <factor>. Thus to divide 2 “power by
LOG(18), we could simply say:

2 "power DIV LOG(10)
but to divide 2+disp by 18+Llen, brackets are needed:
(2+disp) DIV (1@+Llen)

<integer>

This is used in the AUTQ, RENUMBER and DELETE commands and means an
integer constant between 0 and 32767 {a line number).

<step>

This is also used by RENUMBER and AUTO and means an integer between 1 and
255,

<line range>

This is the range of line numbers to be used by LIST and EDIT. It is zero, one or
two <integers>, separated by a comma. If the first number is absent, 0 is
assumed. The second line defaults to 32767. Thus:

LIST means LIST @,32767
LIST 100, means LIST 108,32767

L.1-3

LIST ,300 means LIST 0,300
LIST 200,1000 means LIST 200,1000

<variable>

This is a reference to any variable. Examples are a, a%, a$, a(23), a%(32),
a$(i+1), $a, ?a, 'a, a?1, a!1 etc. Sometimes, it is qualified, eg <numeric
variable>>. There is a special case of <numeric variable> in the second form of
the DIM statement, which is only a or a% types, not !a, a(1) etc

<identifier>

This is a sequence of one or more alphanumeric characters, starting with an
alphabetic character, ie a real variable name. In BBC BASIC, alphabetic
characters are A-1, a-z, £ and _. Numerics are the digits @8-9. There is also the
special identifier, 8% (see PRINT). User-defined procedures and functions may
have names that start with a digit, and contain @. Other identifiers may not.

<string>
This means zero or more ASCII characters. For example, after a * statement,

there is @ <string> which is passed to the operating system. A <string> is
terminated by the carriage return at the end of the line.

<space>

This is simply the ASCII character ” 7, with code 32, or &20. There are few
occasions where spaces are necessary in BBC BASIC, although they can be
used to good effect to format a program so it is easy to understand.

<statements>

This means zero or more statements, separated by colons, eg PRINT "Hello":
GOTO 18@. Null statements are permitted in BBC BASIC, so lines such as:

IF GEY

are valid. In this example, the optional THEN is omitted, and there is a null THEN
part. The keywords REPEAT, THEN, ELSE and the assembly language introducer
[do not require colons to separate them from the next statement. Also, there is
no need for a colon after the PROC or FN part of a OEF statement.

<proc part>

This is the text that follows the PROC or FN part of a user-defined procedure or
function. It has the format:

<identifier>[<parameter list>>]

where <identifier> is described above and the optional <parameter list> has a

L.1-4

N

N

—

format dependent on the context. If the PROC/FN is in a DEF statement, it has
the format:

(<variable> [, <variable>] etc)

that is, one or more variables (the formal parameters) between round brackets.
When used in a PROC/FN call, the parameter list has the format:

(<expression> [, <expression>] etc)

where the expressions correspond in type to the formal parameters.

L.2 Syntax and usage of BASIC
keywords

Below are the complete descriptions of the statements, commands and
functions that BASIC understands, in alphabetical order. None of the
assembler mnemonics or pseudo-operators are mentioned, as these are
described in Section P.

ABS

Function giving magnitude of its numeric argument

Syntax
ABS <factor>

Argument

Any numeric.

Result
Same as the argument if this is positive, or —(the argument) if it is negative.

Example
diff=ABS(Llength1—Length2)

Note

The largest negative integer does not have a legal positive value, so that if
a%=—21476483648, ABS(a%) yields —2147483648.

ACS

Function giving the arc-cosine of its numeric argument

Syntax
ACS<factor>

Argument

Real or integer between —1 and 1 inclusive.

Result
Real in the range 0 to Pl (radians).

L.211

Examples

ang le=DEG(ACS(cos1))
PRINT ACS(B.5)

ADVAL AD.

Function reading data from an analogue port or giving buffer data

Syntax

(1) ADVAL<factor>
(2) ADVAL<factor>
(3) ADVAL<factor>

8]
Argument
Negative integer —n, where n is a buffer number between 1 and 9.

Result

The number of spaces or entries in the buffer is given in the table below
—n Buffer name Result

-1 Keyboard (input) Number of characters used (0-31)

—2 RS-423 (input) Number of characters used (0-255)

-3 RS-423 (output) Number of characters free (0-191)

—4 Printer (output) Number of characters free (0-63)

-5 Sound 0 (output) Number of bytes free (0-15, step 3)
—6 Sound 1 {output) Number of bytes free (0-15, step 3)
-7 Sound 2 (output) Number of bytes free {0-15, step 3)
-8 Sound 3 (output) Number of bytes free (0-15, step 3)

In the table ‘step 3’ means that one entry in the buffer uses three bytes.

2)
Argument
Zero

Result

ADVAL(@) gives information on the joystick ‘fire’ buttons and the last analogue
channel to complete conversion

ADVAL(@) AND 1 is non-zero if the ‘left’ button is being pressed

ADVAL(@) AND 2 is non-zero if the ‘right’ fire button is being pressed

ADVAL(@) DIV &10@ gives the number of the last A/D channel (1-4) to complete
a conversion, or 0 if no channel has completed since the
last *FX16 or *FX17.

L.2-2

(8]
Argument

Positive n, where n is the number of an analogue channel in the range 1-4.

Result

Integer in the range 0-65520 increasing in steps of 16. A voltage of zero on
channel n gives a result of 0, increasing linearly to approximately 1.8 volts on
channel n, which gives a result of 65520.

Examples

IF ADVAL(P)=3 THEN PROCboth.firing
REPEAT UNTIL ADVAL(1) < 32768

AND A.
Operator giving logical or bitwise AND

Syntax
<relational>> AND <relational>

Operands

Relational expressions, or ‘bit’ values to be ANDed

Result

The logical bitwise AND of the operands. Corresponding bits in the integer
operands are ANDed to produce the result. If used to combine relational values,
AND’s operands should be true logical values, ie TRUE (—1) or FALSE (0),
otherwise unexpected results may occur. For example, 2 and 4 are both ‘true’
(ie non-zero), but 2 AND 4 yields FALSE, ie zero.

Examples

a= x AND y:REM a is set to binary and of x and y

PRINT variable AND 3:REM print lowest 2 bits of variable

IF day=7 AND month$="March' THEN PRINT "Happy birthday, Rob"
IF temp>508 AND NOT windy THEN PROCgoout ELSE PROCstay.in
REPEAT a=a+1

b=b—1

UNTIL a>1@ AND b<@

isadog= feet=4 AND tails=1 AND hairy:REM set isadog to logical
true if all conditions are met

L.2-3

ASC
Function giving the ASCII code of the first character in string

Syntax
ASC <factor>

Argument
String of 0-255 characters.

Result

ASCII code of the first character of the argument in the range 0-255, or —1 if
the argument is a null string.

Examples

Xx2=ASC (name$)
IF code >= ASC("a") AND code <= ASC(''z") THEN PRINT “Lower case'

ASN

Function giving the arc-sine of its numeric argument

Syntax
ASN<factor>

Argument

Numeric between —1 and 1 inclusive.

Result
Real in the range —PI/2 to +PI/2 radians.

Examples

PRINT ASN(opposite/hypotenuse)
angle=DEG(ASN(B.2213))

ATN

Function giving the arc-tangent of its numeric argument

Syntax
ATN<factor>

L.24

Argument

Any numeric

Result
Real in the range —Pl/2 to +Pl/2 radians.

Examples
PRINT "The slope is ";ATN(opposite/adjacent)

AUTO AU.

Command initiating automatic line numbering

Syntax
AUTO [<integer>] [, <step>}

Parameters

<integer> is an integer constant 0-32767 and is the first line to be
automatically generated. <step> is an integer constant 1-255 and is the
amount by which line numbers increase when RETURN is pressed.

Purpose

AUTO is used when entering program lines to produce a line number
automatically, so you do not have type them yourself. To turn off AUTO, use
ESCAPE. AUTO will stop if the line number becomes greater than 32767.

Examples

AUTO
AUTO 1080
AUTO 12,2

BGET+# B.#

Function returning the next byte from a file

Syntax
BGET# <factor>

Argument

A channel number returned by an OPEN function in the range 1-255
(depending on the filing system and how many files are open).

L.2-5

Result

The ASCII code of the character read (at position PTR#) from the file in the
range 0-255.

Note

PTR# is updated to ‘point to’ the next character in the file. If the last character
in the file has been read, EOF# for the channel will be TRUE. The next BGET# will
return 2564 and the one after that will produce an ‘EQF’ error.

Examples

charZ=BGET#(channel)
char$=CHR$(BGET#f i Leno}

BPUT# BP.#
Statement to write a byte to a file

Syntax
BPUT#<factor> , <expression>

Arguments

<factor> is a channel number in the range 1-255, as returned by an OPEN
function. The <expression> is an integer 0-255, and is the ASCII code of the
character to be sent to the file.

Note

PTR# is updated to point to the next character to be written. If the end of the file
is reached, the length (EXT#) will increase too. It is only possible to use BPUT#
with OPENUP and OPENOUT files, not OPENIN ones.

Examples

B8PUT#outfil ,byteX
BPUT#2 ,ASC(mid$(name$,pos, 1))

CALL CA.

Statement to execute a machine code subroutine

Syntax
CALL<expression> [,<variable>] etc

Arguments
<expression>> is the address in the range 0-&FFFF (65535) of the routine to be

L.26

called. The zero or more parameter variables may be of any type, and must
exist when the CALL statement is executed. They are accessed through a
parameter block that BASIC sets up at location &600. The format of this
parameter block and of the variables accessed through it are described below.

Purpose

Use CALL to enter a machine code program from BASIC. Before the routine is
called, the least significant bytes of A%, X% and Y% are transferred to the A, X
and Y 65C12 registers and the least significant bit of the C% variable is
transferred into the C bit of the status register.

Format of the CALL parameter block

The addresses of the variables given after the machine code address in the CALL
statement are stored in a table which may be accessed by the machine code
routine. This table, called the parameter block, starts at address &600, and has
the following format

Address Contents

&600 Number of parameters
&601 Address of parameter 0
&603 Type of parameter 0
&604 Address of parameter 1
&606 Type of parameter 1
&607 Address of parameter 2
&609 Type of parameter 2
&60A and so on...

In summary, &600 contains the number of parameters, &601+3*n and
&602+3*n contain the address of parameter n (in normal low-byte, high-byte
order), and &603+3*n contains the type number of parameter n. There may be
0 to 85 parameters. ‘

The type numbers of variables are
Type Description

&00 A one-byte integer, eg ?X%
&04 A four-byte integer, eg X%, X%
&05 A five-byte real number, eg X
&80 A string at an address, eg $X%
&81 A string variable, eg X$

These types have the following formats:

2X%
The address points to a single-byte value in the range 0-255, or —128 to +127 if
it is being interpreted as a signed quantity.

L.2-7

~

X%, X%

The address points to a four-byte integer, with the least significant byte at the
lowest address. Integers are stored in two’s complement form, and so can have
values in the range —2147483648 (&80000000) to +2147483647
(& TFFFFFFF).

X

The address points to a five-byte real number. The first byte is the exponent in
excess—128 format. The next four bytes are the mantissa, most significant byte
first. The most significant bit of the first mantissa byte is the sign of the whole
number. The mantissa is always normalised so that there is an assumed 0.1
before the 31 bits of the stored mantissa. This format is summarised in the
diagram below:

EXPONENT MANTISSA
A
—
76543210765432107651.321076543210765/-3210
lll..ll‘lll‘lljl U S WO N BT T GHEY W SO N TN SR T S B
i 1 I i
L—SIGNBtT

X%

The address points to a string of up to 255 characters which is terminated by a
carriage-return (CHR$(13)). Any character except carriage-return may appear
in the string. If the address points directly at the carriage return, the string is a
null string, ie has a length of zero.

X$
The address points at the string information block of the variable. This is a
four-byte table givingthe following information

Address+0 Start address of the string (2 bytes)
Address+2 Number of bytes allocated (1 byte)
Address+3 Current length of string (1 byte)

In order to access the contents of the string, the address given in the CALL
parameter block must be used to access the string information block. The first
two bytes of this structure give the address of the text of the string. The third
byte of the SIB gives the size to which the string may grow before a new area of
memory is allocated for it. The last byte gives the current length of the string.
Both of these bytes are in the range 0-255.

Accessing arrays with CALL
The variables passed to a CALLed routine may be array elements. As arrays are

L.2-8

always stored contiguously, the address of an array may be found by passing its
first element. Similarly, the addresses of a range of elements may be found by
passing the first and last elements in the range.

An example would be a sort program, which may be called with
CALL sort,name$(@) ,name$(100). The CALL parameter block would have two
entries; one for the address of the SIB of name$(@), and one for the address of
the SIB of name$(12@) . The SIB for name$(1) would be found at the address of
the SIB of name$(@) plus four.

The same technique may be applied for arrays of reals and integers, though in
these cases the CALL parameter block addresses point to the elements
themselves, rather than information blocks.

CHAIN CH.
Statement to LOAD and RUN a BASIC program

Syntax
CHAIN <expression>

Argument

<expression> should evaluate to a filename (and therefore a string) which is
valid for the filing system in use, eg up to ten characters long for the cassette
filing system.

Notes

A filing system error may be produced if, for example, the file specified can’t be
found. When the program is loaded, all existing variables are lost (except the
system integer variables). It is possible to LOAD and then RUN a ‘bad’ program,
but not to CHAIN one.

Examples

CHAIN "partB"
CHAIN a%$+'"2"

CHRS$

Function giving the character corresponding to an ASCII code

Syntax
CHR$ <factor>

Argument
An integer in the range 0-255.

1.29

Result
A singlecharacter string whose ASCII code is the argument.

Examples

PRINT CHR$(code);
lower$=CHR$(ASC(uppers$) OR &20)

CLEAR CL.

Statement to remove all program variables

Syntax
CLEAR

Purpose

When this statement is executed, all variables except the system integer
variables are removed, and so become undefined. In addition, any procedures,
subroutines, loops etc that are active will be forgotten.

CLG
Statement to clear the graphics window to the graphics background colour

Syntax
CLG

CLOSE# CLO.#

Statemenu to close an open file

Syntax
CLOSE# <factor>>

Argument

An integer in the range 0-255. If 0 is used, all open files will be closed, otherwise
only the file with the channel number specified will be closed. The channel
number should have been assigned by an OPEN function.

Purpose

Closing a file ensures that its contents will be updated on whatever medium is
being used. This is necessary as a certain amount of buffering is used to make
the transfer of data between computer and mass-storage device more efficient.
Closing a file therefore releases a buffer for use by another file (all filing

L.2-10

systems have a limit to the number of files that may be open at once, eg 2 for
the CFS and 10 for the ADFS).

Examples

CLOSE#indexFile
CLOSE#P:REM This closes all open files.

CLS

Statement to clear the text window to the text background colour

Syntax
CLS

Note
CLS also resets COUNT to zero.

COLOUR (COLOR) C.

Statement to set the text colours

Syntax
COLOUR <expression>

Argument

<expression> is an integer in the range 0-255. The range 0-15 sets the text
forground colour; adding 128 to this (ie 128-143) sets the text background
colour. The colour is treated MOD the number of colours in the current mode.
The argument is the ‘logical’ colour. For a list of the default logical colours, see
the VDU drivers section. The actual colours produced by the logical colours
may be altered using VDU 19. The table on the next page shows the default
colours for two, four and sixteen-colour modes

Note that only colours 0 and 1 are ‘valid’ in two-colour modes. After that the
cycle repeats. Similarly, only colours 0, 1, 2 and 3 are distinct in the four-colour
modes. Colours 8-15 in the 16-colour modes are the flashing colours; the screen
alternates between the two colours shown at a rate set by *FX9 and *FX18.

Examples

COLOUR fore+1
COLOUR 128+back

L.2-11

Colour 2-colour modes 4-colour modes 16-colour modes

0 Black Black Black

1 White Red Red

2 Black Yellow Green

3 White White Yellow

4 Black Black Blue

5 White Red Magenta

6 Black Yellow Cyan

7 White White White

8 Black Black Black/white
9 White Red Red/cyan
10 Black Yellow Green/magenta
11 White White Yellow/blue
12 Black Black Blue/yellow
13 White Red Magenta/green
14 Black Yellow Cyan/red
15 White White White/black
COS

Function giving the cosine of its numeric argument.

Syntax

€0S <factor>

Argument

<factor> is an angle in radians. The angle is scaled down so that it is between
—P1 and PI radians.

Result
Real between —1 and +1.

Notes

If the argument is outside the range —8388608 to 8388608 radians it may not
be scaled down correctly and the error Accuracy Llost will be given.

Examples

PRINT COS(RAD(45))
adjacent = hypotenuse*C0S(angle)

L.2-12

COUNT Cou.

Function giving the number of characters printed since the last newline

Syntax
COUNT

Result

Integer between 0 and 255, giving the number of characters output since the
last newline was generated by BASIC.

Notes

COUNT is reset to zero every time a carriage return is printed (which may
happen automatically if WIDTH is being used). It is incremented every time a
character is output by PRINT, INPUT or REPORT, but not by VDU or any of the
graphics commands. COUNT is also rest to zero by CLS and MODE.

Examples

REPEAT PRINT ' *';
UNTIL COUNT=20
chars = COUNT

DATA D.

Passive statement marking the position of data in the program

Syntax
DATA [<expression>] [, <expression>>] etc

Arguments

The expressions may be of any type and range, and are only evaluated when a
READ statement requires them.

Notes

The way in which DATA is interpreted depends on the type of variable in the
READ statement. A numeric READ will evaluate the data as an expression,
whereas a string READ will treat the data as a literal string. Leading spaces in
the data item are ignored but trailing spaces (except for the last data item on
the line) are counted. If it is necessary to have a comma or quote in the data
item, it must be put within quotes, eg

DATA 'lA’Bll’ """ABCD"
If an attempt is made to execute a DATA statement, BASIC treats it as a REM.

L.2-13

The DATA statement, like the other passive statements, should be the first on a
line in order to be recognised by BASIC.

Examples

DATA Jan,Feb,Mar ,Apr, May,Jun,Jul ,Aug,Sep,0ct, Nov,Dec
DATA 3.26,SE-3,"WATTS"

DEF

Passive statement defining a function or procedure.

Syntax

DEF FN<proc part>
or
DEF PROC<proc part>

where <proc part> has the form <identifier>{<parameter list>]

Parameters

The optional parameters, which must be enclosed between round brackets and
separated by commas, may be of any type, eg parm, parm%, parm$, !parm,
$parm etc

Purpose

The DEF statement marks the first line of a user-defined function or procedure,
and also indicates which parameters are required and their types. The
parameters are local to the function or procedure, and are used within it to
stand for the values of the actual parameters used when it was called.

Notes

Function and procedure definitions should be placed at the end of the program,
8o that they cannot be executed except when called by the appropriate PROC
statement or FN function. The DEF statement should be the first on its line.

Examples

DEF FNmean(a,b)
DEF PROCinit
DEF PROCthrowdice(d%,tries, mesg$)

DEG

Function returning the numbers of degrees of its radian argument.

L.2-14

Syntax
DEG <factor>

Argument

Any numeric value.

Result
A real equal to 180*n/PI, where n is the argument’s value.

Example

angle=DEG(ATN(a))
PRINT DEG(PI1/4)

DELETE DEL.

Command section of the program

Syntax
DELETE <integer> , <integer>

Arguments

Integer constants in the range 0-32767. They give the first and last line to be
deleted respectively. If the first line number is greater than the second, only the
first line specified is deleted.

Examples

DELETE 110,150
DELETE £,10000

DIM

Statement declaring arrays or reserving storage.

Syntax
DIM <dim part> [, <dim part>] etc

where <dim part> is

(1) <identifier>[% or $](<expression> [,<expression>] etc) or
(2) <numeric variable> <space>><expression>

)

The <identifier> can be any real, integer or string variable name. The
expressions are integers which should evaluate to 0-32767. They declare the
upper bound of the subscript; the lower bound is always 0.

L.2-15

This is the usual way of declaring arrays in BASIC. They may be
multi-dimensional, and the upper bound is limited only by the amount of
memory in the computer. Numeric arrays are initialised to zeros and string
arrays to null strings.

(2)

The <numeric variable> is any integer or real name. The <expression>> gives
the number of bytes of storage required minus 1 and should be in the range —1
to 65535.

The use of this form of DIM is to reserve a given number of bytes, for example in
which to put machine code. The address of the first byte reserved is placed in
the <numeric variable>. The byte array is uninitialised.

Examples

DIM name$(numnames¥}

DIM sin(9@)

DIM vartop —1:REM sets vartop to the current top of variables
DIM bytes’ sizex1@+overhead

DIV
Integer operator giving the quotient of its operands

Syntax
<operand>> DIV <operand>

Operands

Integer-range numerics. Reals are converted to integers before the divide
operation is carried out. The righthand side must not evaluate to zero.

Result
The (integer) quotient of the operands, always rounded towards zero.

Examples

PRINT (first—last) DIV 10
a%=space’ DIV &100

DRAW DR.

Statement to draw a line to specified co-ordinates

Syntax

DRAW <expression> , <expression>

L.2-16

Arguments

The <expressions> are integer numerics in the range —32768 to +32767.
They are the coordinates to which a line is drawn in the current graphics
foreground colour. The graphics cursor position is updated to these
co-ordinates. DRAW is equivalent to PLOT 5.

Examples

DRAW 640,512:REM Draw a line to the middle of the screen
DRAW x%*16, yi=4

EDIT ED.
Command calling the text editor from within BASIC

Syntax
EDIT [<line range>] [IF <string>]

Arguments
See the section on LIST for a description of the <line range> and IF part.

Purpose

The EDIT command converts the lines specified (the whole program by default)
into a text file in memory. The screen editor, which is usually accessed by the
*EDIT command, is then entered. This enables the BASIC program to be edited
as a text file, with all the usual search and replace facilities that are available
in the screen editor. When the program has been edited to the user’s
satisfaction, the ‘Return to language’ command may be used to re-enter
BASIC. As this is done, BASIC re-tokenises the program so that it may be
executed as usual.

Notes

When the program is being converted for the Screen Editor, there has to be
enough room in memory for both the tokenised and text versions. If there isn’t,
a No room error will be given, along with the line number at which the
conversion process failed. At this stage, CLEAR should be typed. It can be seen
that the largest program that may be edited occupies about two thirds of the
memory between PAGE and HIMEM. If this limitation proves to be too severe, it is
suggested that the program be maintained as an EDIT text file, and only
tokenised into BASIC’s internal form when it has to be RUN; by issuing a
‘Return to language’ command from the editor. As the tokenisation process
overwrites the text version of the program present, very large files may be
tokenised.

L.2-17

When BASIC calls the editor, a special form of the *EDIT command is used
*EDIT <ptrl> , <ptr2>. <ptrl> is the address in hex of a pointer to the start
of the text area. <ptr2> is the address in hex of a pointer to the byte after the
end of the text area.

ELSE EL.
Part of the IF ... THEN ... ELSE construct

Syntax
ELSE <statements>

Notes

ELSE may occur anywhere in the program, but is only meaningful after an IF
or ON ... GOSUB/GOTO statement. If the expression after the IF evaluated to
FALSE (zero),-or the expression after the ON is not in the correct range, then the
statements following the ELSE will be executed. Elsewhere, ELSE is treated as a
REM statement.

Examples

IF a=b THEN PRINT "hello'" ELSE PRINT "goodbye"
IF ok ELSE PRINT "Error"
ON choice GOSUB 100,200,300 ,4080 ELSE PRINT'Bad choice"

END

Statement terminating the execution of a program

Syntax
END

Note

END is not always necessary in programs; execution will stop when the line at
the end of the program is executed. However, END {or STOP) must be included if
execution is to end at a point other than at the last program line. This prevents
control ‘falling through’ into a procedure, function or subroutine.

ENDPROC E.

Statement marking the end of a user-defined procedure

Syntax
ENDPROC

1.2-18

Purpose

When executed, an ENDPROC statement causes BASIC to terminate the
execution of the current procedure, and restore local variables and actual
parameters. Control is passed to the statement after the PROC which called the
procedure. ENDPROC should only be used in a procedure, otherwise a No PROC
error will be given when it is encountered.

Examples

ENDPROC
IF a<=@ THEN ENDPROC ELSE PROCrecurse(a—1)

ENVELOPE ENV.

Statement defining a sound envelope

Syntax
ENVELOPE <expressionl>, ... <expressionld>

Arguments

The 14 expressions are all treated as one-byte quantities. They control various
aspects of the way in which sound generated by the SOUND statement changes
in pitch and loudness with time. The meanings of the expressions are as follows:

(1) N - Envelope number.

This is in the range 1-16. If RS-423 output is being used, or a cassette output
file (ie an OPENOUT file) is open, then only envelope numbers 1-4 are available.

(2) T — Time interval.

This is length of a single time step in the envelope, and it controls the rate at
which the pitch and loudness of the sound change. It is in the range 0-127 (in
centi-seconds). An interval of zero is taken to mean an interval of one
centi-second. Usually the pitch envelope {see below) ‘auto-repeats’ at the end of
its cycle. By adding 128 to the time inerval, so that it lies in the range 128-255,
this auto-repeat is disabled.

(3)-(5) PI1,PI2andPI3 - Pitch increments.

The pitch envelope is divided into three sections. These parameters control the
amount by which the pitch varies on each envelope step. They are treated as
signed one-byte quantities in the range —128 to +127.

(6)-(8) PNI1,PN2and PN3 - Pitch steps.
These three parameters give the number of steps in each section of the pitch

L.2-19

envelope, in the range 0-255. The pitch varies by P11 for PN1 steps, then by P12
for PN2 steps and finally by PI3 for PN3 steps. Pitch chnages occur every T
centi-seconds. The amount by which the pitch varies throughout the envelope
is thus given by PI1*PN2+PI2*PN2-+ PI3*P3. After time T*(PN1+PN2+PN3)
the pitch envelope ends. If T is in the range 0-127, the pitch is reset to its initial
value and the pitch envelope repeats, otherwise the pitch remains at its final
value.

(9) AA - Attack phase amplitude change.

Whereas in the pitch of an envelope-controlled note starts at the value given by
the SOUND statement causing it, the amplitude (loudness) always starts at zero.
It increases every T centi-seconds by the amount specified in AA. This is a
signed integer in the range —128 to +127, though as the initial amplitude is
zero, only positive steps give predictable results.

(1) AD - Decay phase amplitude change.

Once the amplitude has reached the value given by ALA (see below), the decay
phase commences. During this phase, the value in AD is added to the
amplitude until this reaches ALD (see below). AD may be in the range —128 to
+127.

(11) AS - Sustain phase amplitude change.

When the final decay amplitude is reached (ALD), the volume varies by the
step given in AS. As its name implies, this is often zero, so there is no change in
amplitude, though like the other amplitude change parameters, it may be in
the range —128 to 127. The note changes by AS until it has been sounding for
the time given in the SOUND statement that started it.

(12) AR - Release phase amplitude change.

At the end of the sustain phase, the amplitude envelope enters its final stage,
the release. During this phase, the amplitude is varied every T centi-seconds by
the amount given in AR, which, as usual, is in the range —128 to +127. The
release phase terminates when the amplitude reaches zero. By making AR
zero, the note may be sounded at the level set during the sustain phase
indefinitely.

(13) ALA - Attack phase target level,

The volume of the sound increments by AA every T centi-seconds until the
amplitude ALA is reached. ALA should be in the range 0-126.

1.2-20

(14) ALD - Decay phase targetlevel.

The volume of the sound increments by AD every T centi-seconds until the
amplitude ALD is reached. ALD should be in the range 0-126.

Pitch envelope example

Below is a diagram of a typical pitch envelope. It shows the time in
centi-seconds along the horizontal axis and the pitch value along the vertical
axis.

PITCH
160
140
120
100

80

60

40

204 1ST. SECT. PN1
PN2 —L

0 T T T T T T T 13 T T T T T

T T T U T T T T
0 2 & 6 8 10 12 14 ¥ 18 20 22 24 26 28 30 32 34 36 38 40 42
TIME IN CENTI-SECONDS

The ENVELOPE statement to produce the pitch variation shown in the diagram is
ENVELOPE 1,1,18,-5,50,12,27,3,127,0,08,-127,127 0

The SOUND command used would be something like SOUND 1,1,48,18. The
amplitude parameters are irrelevant in this example, the important part of the
envelope being the step T of one centi-second, and the six pitch parameters. It
can be seen that the pitch varies in steps of 10 for 12 centi-seconds, then
decreases in step of 5 for 27 centi-seconds, and finally increases in steps of 50
for three centi-seconds. As T is less than 128, the pitch envelope auto-repeats.
Note that the pitch parameters ‘wrap around’, so if an attempt is made to
increase the pitch above 255, the new value will be treated MoOD 256,

Amplitude envelope example

The diagram below shows how the volume of a note may vary with time. The
horizontal axis shows times in centi-seconds and the vertical axis shows the
volume.

L.2-21

AMPLITUDE
OURATION

-
ATTACK DECAY
ALA-120- — - — —

RELEASE

SUSTAIN

160 -

ALD--80 b -4

60+

Lﬁ

20—

¥
0 4 10 1& 20 30 34 40 50
TIME IN CENTI-SECONDS

The command used to produce this envelope is
ENVELOPE 1,1,0,6,0,0,0,08,30,-4,8,-5,1208,80

The SOUND command producing the duration shown in the diagram would be
SOUND 1,1,4@,7.

EOF#

Function giving end of file status of a file

Syntax
EOF#<factor>

Argument

A channel number returned by an OPEN function in the range 1-255 (depending
on the filing system and how many files are open).

Result
TRUE if the last character in the specified file has been read, FALSE otherwise.

Examples

REPEAT VDU BGET#f1 le
UNTIL EOF#file
IF EOF#invoices PRINT "No more invoices'

EOR

Operator giving the logical or bitwise excusive-OR

L.2-22

Syntax
<relational> EQR <relational>

Operands
Relational expressions, or ‘bit’ values to be exclusive-ORed

Result

The logical bitwise exclusive-OR of the operands. Corresponding bits in the
operands are ex-ORed to produce the result. The result is zero if the operands
are equal, non-zero otherwise.

Examples

PRINT height>10 EQR weight<2@
bits = mask EOR valuel

ERL

Function returning the last error line

Syntax
ERL

Result

Integer between 0 and 32767. This is the line number of the last error to occur.
An error line of zero implies that the error happened in ‘immediate mode’.

Examples

REPORT
IF ERL<>@ THEN PRINT " at line ";ERL
IF ERL=3245 PRINT "Bad functicn, try again'

ERR

Function returning the last error number

Syntax
ERR

Result

An integer between 0 and 255. Errors produced by BASIC are in the range
1-127 and Operating System errors are greater than 127.

L.2-23

Notes

The error number 0 is classed as a ‘fatal’ error and cannot be trapped by the
ON ERROR statement. An example of a fatal error is that produced when a
BASIC STOP statement is executed.

Examples

IF ERR=18 THEN PRINT ''Can't use zero; try againf!"
IF ERR=17 THEN PRINT ''Sure?"
IF GET$="Y" THEN STOP

ERROR ERR.
Part of the ON ERROR statement

Syntax
ON ERROR <statements> or
ON ERROR OFF

Notes

The ERROR reserved word only occurs in an ON ERROR statement which is
described below,

EVAL EV.

Function causing its argument to be evaluated

Syntax
EVAL <factor>

Argument
A string which EVAL tries to evaluate as a BASIC expression.

Result

EVAL can return anything that could appear on the right hand side of an
assignment statement. It can also produce the same errors that occur during
assignment, eg Type mismatch and No such FN/PROC.

Examples

INPUT hex$
PRINT EVAL('&'"+hex$)
f$="MIDS ("' : e$=EVAL(f$+"""""+a$+"""" 16)")

L.2-24

EXP

Function returning the exponential of its argument

Syntax
EXP<factor>

Argument
Numeric from the largest negative real (about —1E38) to approximately +88.

Result

Positive real in the range 0 to the largest positive real (about 1E38). The result
could be expressed as e”(argument), where e is the constant 2.718281828,

Example
DEF FNcoshGO=C(EXP(X)+EXP(—x))/2

EXT#

Pseudo-variable controlling the length (extent) of an open file

Syntax
(1) EXT#<factor>
(2) EXT#<factor>=<expression>

1)
Argument
Channel number, as allocated by one of the OPEN functions.

Result

Integer giving the current length of the file, from zero to, in theory
2147483648, though in practice the extent is limited by the file medium in use.

2)

Argument

Channel number, as allocated by one of the OPEN functions.

The <expression>> is the desired extent of the file, whose upper limit depends
on the filing system. The lower limit is zero. The main use of the statement is to

shorten a file, eg EXT#file=EXT#file—&1800. A file may be lengthened by
using PTR#.

L.2-25

Examples

IF EXT#file>9000@ THEN PRINT "File full':CLOSE#file
EXT#0p=EXT#0p+&2008

FALSE FA.

Function returning the logical value ‘false’

Syntax
FALSE

Result
The constant zero. The function is used mnemonically in logical expressions.

Examples

flag=FALSE
REPEAT UNTIL FALSE

FN

Word introducing or calling a user-defined function

Syntax

(1) DEF FN<proc part>
(2) FN<proc part>

(1

For the format of <proc part>, see DEF above. It gives the names and types of
the parameters of the function, if any. For example:

100@ DEF FNmin(a%,b%) IF a¥<b% THEN =a% ELSE =b%

a% and b% are the ‘formal parameters’. They stand for the expressions passed to
the function (the ‘actual parameters’y when FNmin is called. The result of a
user-defined function is given by a statement starting with =. As the example
above shows, there may be more than one = in a function; the first one
encountered terminates the function.

User defined-functions may span several program lines, and contain all of the
normal BASIC statements, eg FOR laops, IF statements ete. It is also possible to
declare LOCAL variables which will preserve the value of a variable for the
duration of the function.

L.2-26

@

<proc part> is an identifier followed by a list of expressions corresponding to
the formal parameters in the DEF statement for the function. The result
depends on the ‘assignment’ that terminated the function, and so can be of any
type and range. An example function call is:

PRINT FNmin(2*bananas’, 3*apples’%+1)

Examples

DEF FNfact(n%) IF n%<1 THEN =1 ELSE =nZ%*FNfact(nZ%Z-1)
DEF FNhex4(n%)=RIGHT$(''BBQ"+STRS(nX) ,4)
REPEAT PRINT FNhex4(GET): UNTIL FALSE

FOR F.
Part of the FOR... NEXT statement

Syntax

FOR <numeric variable>=<expression>> TO0 <expression> [STEP
< expression>]

Arguments

The <numeric variable> can be any numeric variable reference, eg I, lLen%,
1&7@. The <expressions> can be any numeric expressions, though they must
lie in the integer range if the <numeric variable> is an integer one. It is
recommended that integer looping variables are used as (a) the loops go faster
and (b) rounding errors are avoided. If the STEP part is omitted, the step is
taken to be +1.

Notes

The statements between a FOR and its corresponding NEXT are executed at least
once, ie the test for loop termination is performed at the NEXT rather than the
FOR. Thus a loop started with: FOR I=1 T0 @ ... will execute once with I set
to 1 in the body of the loop. The value of the looping variable when the loop has
finished should be treated as ‘undefined’, and shouldn’t be used before being
reset by an assignment.

Examples

FOR addr’%=HIMEM TO &3008 STEP 4
FOR I=1 TO LEN(a$)

GCOL ‘ GC.

Statement to set the graphics colours and actions

L.2-27

N—

Syntax
GCOL <expressionl> , <expression2>

Arguments

<expressionl> is the plot action in the range 0-255. It determines the effect of
future PLOT commands on the screen. Currently defined values are:

Plot action Meaning

Store the colour <expression2> on the screen

OR the colour <expression2> with the screen

AND the colour <expression2> with the screen

EOR the colour <expression2> with the screen
Invert the current colour, disregarding <expression2>
Don’t affect the screen at all

Sl W N =O

<expression2> determines the colour that will combined with the screen for
PLOT actions 0-5. It is in the range 0-127, and is treated MOD (the number of
colours in the present mode). Adding 128 to the expression causes the
background colour to be changed instead of the foreground.

If 16 is added to the values of <expression1> above, the first extended colour
fill pattern is used instead of <expression2>, Adding 32 uses the second ECF
pattern, adding 48 uses the third ECF pattern, and adding 64 causes the fourth
ECF pattern to be used instead of <expression2>. VDU 23,2 to VDU 23,5 are
used to set the ECF patterns. Not that when an ECF pattern is re-defined, a
GCOL must be executed to tell the VDU drivers about it, otherwise the the old
pattern will still be used. See the section on the VDU drivers for more
information.

Examples

GCOL 4,128:CLG:REM Invert the graphics window
GCOL 1,2: REM QR the screen with colour 2

GET

Function returning a character code from the input stream

Syntax
GET

Result
An integer between 0 and 255. This is the code of the next character in the

L.2-28

buffer of the currently selected input stream (keyboard or RS-423). The
function will not return until a character is available, so can be used to halt the
program temporarily.

Examples

PRINT "Press space to continue':REPEAT UNTIL GET=32
ON GET-127 GOSUB 11000 ,2000,3800 ELSE PRINT"Illegal entry"

GET$ GE.

Function returning a character from the input stream

Syntax
GETS

Result

A one-character string whose value is CHR$(GET), if GET had been called
instead. It is provided so you can use statements like IF GET$="*"... rather
than IF CHRS(GET)="*"...

GOSUB GOS.

Statement to call a subroutine

Syntax
GOSUB < expression>

Argument

<expression> should evaluate to an integer between 0 and 32767, ie a line
number. If the expression isn't a simple <integer> (eg 1030) then it should be
between round brackets. The line given will be jumped to, and control will be
returned to the statement after the GOSUB by the next RETURN statement.

Examples

GOSUB 2008
GOSUB (230@+2@%opt)

Notes

The RENUMBER command will only work correctly if all GOSUB, GOTO and RESTORE
line numbers are <integer>s. Line numbers that are expressions can't be
renumbered, so the program will stop working correctly. Thus, the
ON ... GOSUB construct is recommended over the GOSUB (<expression>) one.

L.2-29

GOTO G.

Statement to transfer control to another line

Syntax
GOTO <expression>

Argument
See GOSUB above, though control may not be returned to the next statement by
executing a RETURN statement.

Examples

GOTO 230
IF TIME<1080 THEN GOTO 1000

HIMEM H.
Pseudo-variable holding address of the BASIC stack

Syntax

(1) HIMEM
(2) HIMEM=<expression>

1)
Result

An integer giving the location of the BASIC stack, where local variables etc are
stored. The stack grows down towards LOMEM, so the expression HIMEM — LOMEM
gives an idea of how much free space is available for the program.

2
Argument

<expression> should be an integer between LOMEM and top of useable memory,
as given by OSBYTE &84.

Examples

aZ#=HIMEM—&200 : HIMEM=a% : REM Reserve 2 pages
IF HIMEM<&BOG® THEN PRINT "Compatible mode??"

Notes

If HIMEM is set carelessly, running the program may produce the ‘No room
error. See the section on memory maps under BASIC for more guidance about
the setting of HIMEM. The expression HIMEM—LOMEM gives the number of bytes
available for variable storage and procedure return-address storage.

H

L.2-30

IF

Statement to conditionally execute statements

Syntax
IF <expression> [THEN] [<statements>] [ELSE [<statements>]]

Arguments

<expression> is treated as a truth value. If it is non-zero, it is counted as TRUE
and any <statements> in the THEN part are executed. If the expression
evaluates to zero, then the ELSE part <statements> are executed.

<statements> is either a list of zero or more statements separated by colons, or
a line number. In the latter case, there is an implied 60TO after the THEN, which
has to be present.

Examples

IF french THEN PROCkiss ELSE PROChandshake

IF temp<=10 PROClow_temp

IF aX>b% THEN tYX=aX:a%=b%:bZ=t% ELSE PRINT "No swap"
IF GET : REM wait for a keypress

Notes

The THEN is optional before <statements> unless any of the statements is an
assignment to a pseudo-variable, so IF a THEN HIMEM=... rather than
IF a HIMEM=....The ELSE part matches any IF, so be wary of nesting IFsona
line: constructs of the form

IF a THEN... IF b THEN... ELSE...
should be avoided. However, the form:
IF a THEN... ELSE IF b THEN...
can be used.

INKEY

Function returning a character code from the input stream or keyboard

Syntax

{1) INKEY<factor>
(2) INKEY<factor>
{3) INKEY <factor>

L.2-31

1)
Argument
A positive integer in the range 0-32767, which is a time limit in centi-seconds.

Result

The ASCII code of the next character in the current input buffer, if one appears
in the time limit set by the argument, or —1 when the ‘timeout’ occurs.

2

Argument

A negative integer in the range —255 to —1, which is the ‘negative INKEY code’
of the key being interrogated (see section D).

Result
TRUE if the key is being pressed at the time of the call, FALSE if it isn’t.

6))
Argument
—256.

Result

A number indicating what version of the operating system is in use. Possible
values are:

INKEY(—256) MOS type

-1 BBC MOS 1.00/1.20

0 BBC MOS 0.10

1 Acorn Electron MOS 1.00

250 Acorn ABC MOS

251 BBC MOS 2.00

252 German BBC

253 Current UK BBC (ie this machine)

254 BBC USMOS1.00 or 1.1
Examples

DEF PROCwait(secs¥) dummy=INKEY (1@8@*secs¥):ENDPROC
IF INKEY(—99) THEN REPEAT UNTIL NOT INKEY(-99)

INKEYS$ INK.

Function returning a character from the input stream

L.2-32

Syntax
INKEY$ <factor>

Argument
As INKEY

Result

Where INKEY would return —1, INKEY$ returns the null string. In other
situations it returns CHR$(INKEY <argument>>).

Example

REPEAT UNTIL INKEY$(5@8@)="''" : REM wait for space key for five secon
ds

INPUT L.

Statement obtaining a value or values from the input stream

Syntax

The INPUT statement is too complex to summarise using the simple
conventions adopted in this section. In words, INPUT is folowed by an optional
prompt, which, if present, may be followed by a semi-colon or comma, which
causes a ? to be printed out after the prompt. These are followed by a list of
variable names of any type, separated by commas. After the last variable, the
whole sequence may be repeated, separated from the first by a comma. In
addition the position of prompts may be controlled by the SPC, TAB(and ' print
formatters (see PRINT).

Examples

INPUT a$:REM Print a simple "?" as a prompt

INPUT "How many '',num% : REM prompt is "How many ?*

INPUT "Address &"hex$: REM prompt is "Address &" (no "?" as no ,)
INPUT TAB(1@)"Name " ,n$,TAB(1@)""'Address ", a$

INPUT a,b,c,d,'"More ",yn$

Notes

An additional modifier for INPUT is LINE. If this follows INPUT immediately, and
the input variable is a string, all of the user’s input is read into the variable,
including leading and trailing spaces and commas. Usunally leading spaces are
skipped and commas mark the end of input for the current item. If the input
variable is numeric, only a single value will be selected from the input line.

L.2-33

Example
INPUT LINE ">" basic$

INPUT# L#

Statement obtaining a value or values from a file

Syntax
INPUT# <factor> [, <variable>] etc

Arguments

<factor> is the channel number of the file from which the information is to be
read in the range 1-255. The list of zero or more <variable>s may be of any
type. The separators may be semi-colons.

Examples

INPUT#data , name$,addr1$,addr2$,addr3s, ages
INPUT#data,$buffer,len

Notes
For the format of variables read using INPUT#, see Chapter K.3

INSTR(INS.

Function to find the position of a substring in a string

Syntax
INSTR(<expressionl> , <expression2> [, <expressiond>])

Arguments

<expressionl> is any string which is to be searched for a substring.
<expression2>> is the substring required. <expression3> is a numeric in the
range 0-255 and determines the position in the main string at which the search
for the substring will start. This defaults to 1.

Result

An integer in the range 0-255. If zero is returned, the substring could not be
found in the main string. A result of 1 means that the substring was found at
the first character of the main string, and so on. The position of the first
occurence only is returned.

L.2-34

Notes

If the substring is longer than the main string, zero will always be returned. If
the substring is the null string, the result will always be equal to
<expression3>>, or 1 if this is omitted.

Examples

IF INSTR(any$,"") <> 1 PRINT "Bug in BASIC!!"
REPEAT a$=GET$:UNTIL INSTR("YyNn',a$) > B
posZ=INSTR{com$,"*xFX' ,18)

INT

Function giving the integer part of a number

Syntax
INT <factor>

Argument

Any integer-range numeric.

Result

Nearest integer less than or equal to the argument.

Examples
DEF FNround{(n)=INT{(n+3.5)

size=Llen%Z*INT ((top—bottom)/10@)
LEFT$(LE.

Function returning the left part of a string

Syntax
LEFT$(<expressionl>> , <expression2>)

Arguments

<expressionl> is a string of between zero and 255 characters. <expression2>>
is a numeric in the range 0-255.

Result

A string taken from the leftmost <expression2> characters of <expressionl>.
If <expression2>> is greater than LEN(<expressionl>) then all of the string is
returned.

L.2-35

Examples

leftbit$=LEFTS(input$,LENCinput$) DIV 2)
REM LEFT$(any$,256)=LEFT$(any$,d) as n is treated MOD 256

LEN

Function returning the length of a string
L]

Syntax
LEN<factor>

Argument
Any string of zero to 255 characters.

Result
The number of characters in the argument string, from 0-255.

Examples

REPEAT INPUT a%$: UNTIL LEN(a$)<=18
IF LENin$ > 12 THEN PRINT "Invalid filename"

LET

Statement assigning a value to a variable

Syntax
LET <variable>>=<expression>

Arguments

The <variable> is any ‘addressable ohject’, eg a, a$, a%, !a, a?1@, %a etc
<expression> is any expression of the range and type allowed by the variable:
for reals, any numeric; for integers, any integer-range numeric; for strings, any
string of 0 to 255 characters and for bytes any integer in the range 0-255
(though an integer-range number will be treated MOD 256).

Notes

The LET keyword is always optional in an assignment, and must not be used in
the assignment to a pseudo-variable, eg LET TIME=10@ is illegal.

Examples

LET starttime=TIME
LET a$=LEFT${addr$,1®)
LET table?i=127*SIN(RAD(i))

L.2-36

LINE
Modifier to the INPUT statement

Syntax
See INPUT

Example
INPUT LINE "Type message: "'a$

LIST L.

Command to list the program

Syntax
LIST [<line range>][IF <string>>|]

Arguments

<line range> gives the start and end lines to be listed. Both values are optional
and should be separated by a comma. The first value defaults to zero and the
last to 32767. The IF, when present, is followed by a string of ASCII characters.
Only lines which contain this string will be listed.

Notes

Because the string after IF is tokemised, only one version of the
pseudo-variables (each of which has two tokens) may be found. This is the one
acting as a function (as in PRINT TIME), rather than the statement version (as
in TIME=<expression>>).

There is a small problem with LIST 1F. Occasicnally lines are listed that do not
appear to match the IF part string. The reason is that BASIC line numbers
contain a token &8D followed by three bytes of encoded line number. These
three bytes will sometimes match the desired string, hence the spurious listing.

Examples

LIST list the whole program

LIST 1008, list from line 1000 to the end
LIST 508 list from the start to line 50
LIST 18,40 list from line 10 to 40 inclusive
LIST IF DEF list all lines containing a DEF

LIST ,100 IF fred’= st all lines up to line 100 containing fred¥=

L.2-37

LISTO L.O
Command to get the LIST indentation options

Syntax
LISTO <expression>

Argument
<expression> should be in the range 0 to 7. It is treated as a three-bit number,
the meanings of the bits being:

Bit 0 : A space will be printed after the line number.
Bit 1 : FOR loops will be indented by two spaces.
Bit 2 : REPEAT loops will then be indented by two spaces.

Notes

BASIC strips trailing spaces from program lines at all times. If the current
LISTO option is non-zero, it also strips leading spaces. To enter blank lines (eg
‘1000), either execute LISTO @ first, or include a colon on the ‘blank’ line (eg
1000:%).

Examples

LISTO @ no indentation
LISTO 7 all types of indentation

LN

Function returning the natural logarithm of its argument

Syntax
LN <factor>

Argument
Numeric in the range 0 to about 1E38, with the exception of zero itself.

Result

Real in the range —89 to +88, which is the log to base ‘e’ (2.718281828) of the
argument.

Examples

DEF FNLog2(n)=LN(n)/LN(2)
PRINT LNC1@D

L.2-38

LOAD LO.
Command to load a BASIC program at PAGE

Syntax
LOAD <expression>

Argument
<expression> is a string which should evaluate to a filename that is valid for
the filing system in use.

Examples

LOAD ":2.DEMO"
LOAD FNnextFile

LOCAL LOC.

Statement to declare a local variable in a procedure or function

Syntax
LOCAL [<variable>] [, <variable>] etc

Arguments

<variable>s that follow the LOCAL may be of any type, eg a, a%, a$, '&70,
Sbuffer etc The statement causes the current value of the variables cited to be
stored on BASIC’s stack, for retrieval at the end of the procedure or function.
This means the value inside the procedure may be altered without fear of
corrupting a variable of the same name outside the procedure. At the end of the
procedure, the old value of the variable is restored.

Notes

Local numerics are initialised to zero and local strings are initialised to the null
string.

Examples

LOCAL dx,dy
LOCAL a$,len%, price

LOG

Function returning the logarithm tc base ten of its argument

Syntax
LOG <factor>

L.2-39

Argument
Any numeric between 0 and approximately 1E38, excluding 0 itself.

Result
Real in the range —38 to +38, which is the log to base ten of the argument.

Examples

DEF FNdiff(n)=ABS(LOG(n)—LN(n)/LNC18))
PRINT LOG(2.4323)

LOMEM LOM.
Pseudo-variable holding the address of BASIC variables

Syntax
(1) LOMEM
(2) LOMEM=<expression>

1)
Result

The address of the start of the BASIC variables. This is usually the same as
TOP.

2)
Arguments

<expression>> is the address at which BASIC variables start. The expression
should be in the range TOP to HIMEM to avoid corruption of the program and/or
‘No room’ errors. In any case the expression is taken as a two-byte integer.

Notes

LOMEM should not be changed after any assignments in a program. If it is,
variables assigned before the change will be lost. LOMEM is reset to TOP by CLEAR
(and thus by RUN).

Examples

LOMEM=TOP+&108 : REM reserve a page above TOP
PRINT™LOMEM

MID$(M.

Function returning a substring of a string

L.2-40

Syntax
MID$(<expressionl>, <expression2> |, <expression3>>|)

Arguments

<expressionl> is a string of zero to 255 characters. <expression2>> is the
position within the string of the first character required. <expression3>>, if
present, gives the number of characters in the substring. The default value is
255 (or to the end of the source string).

Result

The substring of the source string, starting from the position specified and of a
length given in the third argument. The result string can never be of greater
length than the source string.

Examples

PRINT MID$("ABCDEFG',2,3);" should say BCD”
PRINT MID${any$,LEN(any$)}+1,any%);" gives a null string"”
right-half$=MID$(any$,LEN(any$) DIV 2}

MOD

Operator giving the integer remainder of its operands

Syntax
<operand>MOD <operand>

Arguments
The <operand>s are integer-range numerics.

Result

Remainder when the left-hand operand is divided by the right-hand one using
integer division.

Examples

INPUT i%: i%=i% MOD max_num’
count%=count’ MOD max¥% + 1
PRINT result’ MOD 1090

MODE MO.
Statement changing the display mode

L2-41

—

Syntax
MODE <expression>

Argument

<expression> should be in the range 0-255. This byte is passed to the operating
system through the VDU drivers. HIMEM may also be changed. It is set to the
highest free RAM address, as returned by OSBYTE &84. For the format of the
various modes, see the section on the VDU drivers. It is not possible to change
mode inside a user-defined function or procedure unless BASIC is running on a
CO-processor.

Examples

MCDE @
MODE m¥%+128

Note
For descriptions of the various modes, see the section on the VDU drivers.

MOVE

Statement to set the position of the graphics cursor

Syntax
MOVE <expression> , <expression>

Arguments

The <expression>s are x- and y-coordinates in the range —32768 to 32767, ie
two-byte integers. The usual range for the x-coordinate is 0-1279, and for the
y-coordinate it is 0-1023, though this changes if a graphics origin has been
defined. MOVE is equivalent to PLOT 4.

Examples

MOVE 0,0 : REM Goto the origin
MOVE 4*x%,4*y’ : REM Scale coordinates.

NEW

Command to remove the current program

Syntax
NEW

L.2-42

Purpose

The NEW command does not destroy the program, but merely sets a few pointers
as if there is no program in the memory. The effect of NEW may be undone using
the OLD command, providing no program lines have been typed in, or variables
created, between the two commands. BASIC does an automatic NEW whenever
it is entered.

NEXT N.
Part of the FOR .. TO .. NEXT structure

Syntax
NEXT |<variable>] [,[<variable>]] etc

Arguments

The <variable>s are of any numeric type, and if present should correspond to
the variable nsed to open the loop.

Notes

The variables after the NEXT should always be specified while the program is in
development, as this enables BASIC to detect improperly nested loops. If the
loop variable given after a NEXT does not correspond to the innermost open loop,
BASIC will close the inner loops until a matching looping variable is found.

Examples

NEXT a%

NEXT : REM close one loop
NEXT j%,i% = REM close two loops
NEXT ,,, : REM close four Lloops

NOT

Function returning the logical “NOT” of its argument

Syntax
NOT <factor>

Argument

An integer-range numeric.

Result

An integer in which all the bits of the argument have been inverted, ie 1s
changed to Os and Os changed to 1s. If the argument is a truth value, NOT can be

L.2-43

used in logicél statements to invert the condition. In this case, the truth value
should only be one of the values —1 (TRUE) or 0 (FALSE)

Examples

IF NOT ok THEN PRINT "Error in input'
inv%=NOT mask’
REPEAT UNTIL NOT INKEY(—99)

OFF
Part of the ON ERROR and TRACE statements.

Syntax

(1) ON ERROR OFF
(2) TRACE OFF

(D
Purpose

ON ERROR OFF disables error trapping so that when an error occurs the default
error action of printing the error message (and line number) and terminating
the program takes place.

(2)
Purpose

TRACE OFF turns off the tracing of the current program. This is done
automatically when an error occurs. See TRACE.

OLD 0.

Command to retrieve a NEWed program

Syntax
oLD

Purpose

The OLD command retrieves a program lost by NEW or BREAK providing no new
program lines or variables have been entered.

ON
Part of the ON... GOTO/GOSUB/PROC and ON ERROR statements.

L.2-44

Syntax

(1) ON <expression0> GOTO <expressionl> [,<expression n>] etc [ELSE
<statement>]

(2) ON <expression0> GOSUB <expressionl> [,<expression n>] etc [ELSE
<statement>>]

(3) ON<expression(0><proc>|,<proc>>] etc [ELSE <statement>>]

(4) ON ERROR{<statements>]

(1) and (2)

Arguments

<expression(> following the ON is an integer between 1 and n, where n is the
number of expressions following the GOTO/GOSUB. The <expressionl> to

<expression n>> are line numbers (see GOSUB for the rules of line numbers). The
optional ELSE part follows the last line number, and is followed by a statement.

Purpose

The ON... GOTO/GOSUB statement provides a multi-way branch facility.
<expression()> is evaluated. If its value is m, then the mth line number
following the GOSUB/GOTO is jumped to. The m is less than 1 or greater than n,
the number of line numbers, the ELSE part is executed. If there is no ELSE part,
an ‘ON range’ error is generated. Note that only a single statement may come
after ELSE. Any other following statements, separated by colon, will be
executed unconditionally. For example:

1% ON a GOSUB 101,208,300 ELSE P."error":PROCerrStuff

The call to PROCerrStuff will made whether the value of a is outside of the
range 1-3 or not. The consequence of this is that the ELSE part of an ON
statement usually contains a GOTO statement.

The difference between the GOTO and GOSUB versions is that in the latter case
control will be returned back to the statement following the ON when a RETURN
is executed.

3
Arguments

<expression0> following the ON is an integer between 1 and n, where n is the
number of <proc> parts. The <proc> parts are normal calls to procedures,
with or without parameters. The optional ELSE part follows the last line
number, and is followed by a statement.

Purpose
The ON... PROC statement is very similar to ON... GOSUB, the difference being

L.2-45

that a call is made to a procedure instead of a subroutine. This provides greater
flexibility (and speed — calling a procedure is faster than calling a subroutine),
but is less ‘standard’ than ON... GOSUB. The note about ELSE made above
applies here too.

@
Arguments

The <statements> following ERROR are zero or more legal BASIC statements
separated by colons.

Purpose
When an ON ERROR is executed, BASIC remembers the position of the
statements following the word ERROR. When an error is subsequently

encountered, BASIC jumps to and executes these statements. Note that after
an error, all loops, procedures etc are closed, so ON ERROR NEXT is not sensible.

Examples

ON choiceX GOSUB 1000,2000,3000,408@ ELSE PRINT"Bad choice”

On ASC(c$) — 127 GOTO 108,120,10,200

ON addrMede PROCacc, PROCimp, PROCabs, PROCabx, PROCaby ELSE PROCothe
rMode

ON choice%+1 PROCLoad{(prog$), PROCsave{prog$), PRCCinsert{prog$) ELSE
PROCerr

ON ERROR GOTO 10000

ON ERROR PROCerr

ON ERROR IF ERR=17 THEN RUN ELSE REPORT:PRINT "at Lline ";ERL:END

ON ERROR OFF : REM Disable the error trapping

OPENIN OP.

Function opening a file for input only

Syntax
OPENIN <factor>

Argument
A string which evaluates to a valid filename for the filing system in use.

Result

A single byte integer acting as a channel number for the file. The exact value
depends upon the filing system and how many files are already open, but will
always lie in the range 1-255, or zero if the file wasn’t found.

L.2-46

Examples

in_file¥=0PENIN("'Invoices')
data%=CPENIN(":1."+data$)

OPENOUT OPENO.

Function opening a file for output only

Syntax
OPENOUT <factor>

Argument and result
See OPENIN above.

Examples

out_f1le%=0PENOUT("'Customers")
data”%=CPENQUT(":2."+data$)

OPENUP
Function opening a file for input and output

Syntax
OPENUP <factor>

Argument
See OPENIN above.

Example
random_f i Le%=0PENUP(''records'")

OR
Operator giving the logical ‘OR’ of its operands

Syntax
<relational>O0R <relational>

Arguments

<relational>s can be any integer-range numerics.

L.2-47

Result

An integer obtained by ORing together the corresponding bits in the operands.
The operands may be interpreted as bit-patterns or logical values.

Examples

PRINT aZ OR &AA5S5
IF a<1 OR a>10@0 THEN PRINT "Bad range"

OSCLI OS.

Statement to pass a string to the operating system

Syntax
0SCLI <expression>

Argument

<expression> should be a string of between 0 and 255 characters. It is passed
to the operating system OSCLI routine.

Notes

The difference between passing a string to the OS via a star command and
OSCLI is that the former make no attempt to process the text following it,
whereas the latter interprets the text as a BASIC expression.

Examples

OSCLI "LOAD *'+file$+'" "+STRSbuffX : REM get the file in buffer
OSCLI '"FX138,08," +STR$(ASC{(c3)) : REM insert a character into
buffer

PAGE PA.
Pseudo-variable holding the address of the program

Syntax

(1) PAGE
(2) PAGE=<expression>

(1)
Result

An address which is a two-byte unsigned number. The lower byte is always 0
(ie PAGE is always on a &100 byte boundary). PAGE is the location at which the
current BASIC program starts.

L.2-48

2
Argument

<expression>> is an integer in the range 0SHWM to HIMEM. The lower byte will be
set to zero automatically. By changing PAGE, several BASIC programs may
reside in the machine at once. PAGE defaults to OSHWM, as returned by OSBYTE
&83

Example
IF PAGE<>&2200 THEN PAGE=82200: CHAIN"LOADER"

Pl

Function returning the value of pi

Syntax
PI

Result
The constant 3.141592653

Examples
DEF FNarea(r)=2*PI+r

PLOT PL.

Statement peforming an an operating system PLOT function

Syntax

PLOT <expressionl > , <expression2> , <expression3>

Arguments

<expressionl> is the plot number in the range 0 to 255, eg 4 for MOVE and 85
for an absolute triangle plot in the current foreground colour. See the section on
the VDU drivers for a full description of the plot numbers. The second and third
expressions are the x- and y-coordinates respectively, in the range —32768 to
+32767.

Examples

PLOT 85,108,108 : REM Draw a triangle
PLOT 69,x,y = REM Piot a single point

L.2-49

POINTY(PO.
Finds the logical colour of a graphics pixel

Syntax
POINT(<expressionl> , <expression2>)

Arguments

<expressionl> is the x co-ordinate of the pixel and <expression2>> is the y
co-ordinate. These are integers in the range —32768 to +32767,

Result

This is an integer in the range —1 to n, where n is 1 less than the number of
logical colours in the current mode. For example, n is 15 in the 16 colour
MODE 2. If —1 is returned, the point specified lies outside the current graphics
window, otherwise it is the logical colour of the point. For an explanation of the
co-ordinate system and the logical colours, see the section on the VDU drivers.

Example
REPEAT YX=YZ+4:UNTIL POINT(64@,Y%)<>B

POS

Function returning the x-coordinate of the text cursor

Syntax
POS

Result

An integer between 0 and n, where n is the width of the current text window
minus 1. This is the position of the text cursor relative to the left edge of the
text window.

Examples

oldx%=P0S
IF POS<>B THEN PRINT

PRINT P.

Print information on the output stream(s)

Syntax
The items following PRINT may be string expressions, numeric expressions, and

L.2-50

the print formatters, ; SPC TAB(' and <space>. By default, numerics are
printed in decimal, right justified in the print field given by @% (see below).
Strings are printed left justified in the print field. The print separators have the
following effects when printing numbers:

r

Don’t right justify (print leading spaces before) numbers in the print field. Set
numeric printing to decimal. Semi-colon stays in effect until a comma is
encountered. Don’t print a new line at the end if this is the last character of the
PRINT statement.

’

Right justify numbers in the print field. Set numeric printing to decimal. This is
the default print mode. Comma stays in effect until a semi-colon is
encountered. If the cursor isn’t at the start of the print field, print spaces to
reach the next one.

Print numbers as hexadecimal integers, using the current right justify mode.
Tilde stays in effect until a comma or semi-colon is encountered.

Print a new line. Retain current right justify and hexadecimal/decimal modes.

TAB(

If there is one argument, eg TAB(n}, print (n— COUNT) spaces. If the cursor is
initially past position n (ie COUNT > n), print a newline first. If there are two
arguments, eg TAB(18,28) , move directly to that tab position. Right justify and
hexadecimal/decimal modes are retained.

SPC(
Print the given number of spaces, eg SPC(5) will output five spaces. Right
justify and hex/decimal modes are retained.

<space>
Print the next item, retaining right justify and hex/decimal modes.

When strings are printed, the descriptions above apply except that
hexadecimal mode does not affect strings. Also, no trailing spaces are printed
after a string unless it is followed by a comma. This prints enough spaces to
move to the start of the next print field.

The format in which numbers are printed, and the width of print fields are
determined by the value of the special system integer variable, 8%. Each byte in
the variable has a special meaning. These are:

Byte 4.
This determines whether the STR$ function will use the print format
determined by @% when converting its argument to a string, or whether it will

L.2-51

use a default ‘general’ format. If the byte is zero (the default), STR$ will use a
general format; if it is non-zero, STR3 will use the format determined by a%.

Byte 3.
This selects the format to be used. The legal values are:

0 — General format. Numbers have the form nnn.nnn, the maximum
number of digits printed being given in byte 2. This is the default format.

1 — Exponent format. Numbers have the form n.nnnEnn, then number of
digits printed being given in byte 2

2 - Fixed format. Numbers have the form nnn.nnn, the number of digits
after the decimal point being given in byte 2.

Byte 2.

This determines the number of digits printed. In General format, this is the
number of digits which may be printed before reverting to Exponent format
(1-10); in Exponent format it gives the number of significant to be printed after
the decimal point (1-10), and in fixed format it gives the number of digits
{exactly) that follow the decimal point.

Byte 1.
This gives the print field width for tabulating using commas, and is in the
range 0-255.

Examples of 9%

2% =&0102020A will use Fixed format with two decimal places in a tab field
width of ten. In addition, STR$ will use this format instead of its default (which
is &0A0A). Numbers will be printed out in the form 1.23, 923.10 etc

2% =&00010408 will use Exponent format. Four significant digits will be
printed, in a field of eight characters. Thus numbers will look like 1.234E0,
1.100E-3, 9.980E10 etc

8% =&0000090A will use General format with up to nine significant digits in a
field width of ten characters. Note that General format reverts to Exponent
format when the number is less than 0.1. This is the default setting of @%.

Notes

Setting byte 2 to 10, eg &0AOA will show the innaccuracies which arise when
trying to store certain numbers in binary. For example:

PRINT 7.7
will print 7.666666669 when a%=&0A0A.

The print formatters ', TAB(and SPC may also be used in INPUT statements.

L.2-52

Examples

PRINT '‘How many eggs '';
PRINT a,SIN(RAD(a)},x,y''p,q
PRINT TAB(18,3)"Profits "SPC(10);profits;

PRINT# P.#

Print information to an open file

Syntax
PRINT#<factor> [, <expression>>] etc

Arguments

The <factor> is the channel number of a file opened for output or update. The
expressions, if present, are any BASIC integer, real or string expressions. They
are evaluated and sent to the file specified. For the internal format of
expressions sent by PRINT#, see section K.3

Example
PRINT#file, name$+":" ,INT(1@@*price+.5) ,qnty%

PROC

Word introducing or calling a user-defined procedure

Syntax
(1) DEF PROC<proc part>
(2) PROC<proc part>

a)

<proc part> has the form <identifier>[{<parameter list>)]. It gives the name
of the procedure (the <identifier>) and the names and types of the optional
parameters, which must be enclosed in brackets and separated by commas.

(2)

The second form is used when the procedure is actually invoked, and this time
the parameter list comprises expressions of types corresponding to the
parameters declared in the DEF PROC statement. The expressions are evaluated
and assigned (locally) to the parameter variables. Control returns to the calling
program when an ENDPROC is executed.

L.2-53

Examples

DEF PROCdelay(n) TIME=@Q:REPEAT UNTIL TIME=n*100:ENDPROL
1f ?flag=@ THEN REPEAT PROCdelay(@.1): UNTIL ?flag

PTR#

Pseudo variable accessing the pointer of a file

Syntax

(1) PTR#<factor>
(2) PTR#<factor>=<expression>

(1)
Argument

<factor> is a one-byte file channel number in the range 1-255, as returned
from an OPEN function.

Result

An integer giving the position relative to the start of the file of the next byte to
be read or written. The minimum value is 0 and the maximum value depends
on the filing sytem in use.

(2)
Argument

<factor> is as (1). The <expression> is an integer giving the desired position
of the sequential pointer in the file.

Note
PTR# is not valid when the cassette filing system is in use.

Examples

PRINT PTR#file;" bytes processed"
PTR#chan%=reck*rec_len%

RAD

Function returning the radian value of its argument

Syntax
RAD <factor>

Argument

A number representing an angle in degrees.

L.2-54

Result
A real giving the corresponding value in radians, ie <argument>#*P1/180.

Examples

siNATi%=SIN(RAD(i %))
PRINT RAD(98)—PI/2;" isn't quite zero!!"™

READ

Statement reading information from a DATA statement

Syntax
READ [<variable>] [, <variable>] etc

Arguments

The zero or more variables should correspond in type to the items in the DATA
statement being read. In fact, a string READ item will be able to read any type of
DATA and interprets it as a string constant after stripping leading spaces. A
numeric READ item tries to evaluate its DATA, so in the latter case the DATA
expression should yield a suitable number.

Examples

READ a%,fred
READ !'&70, $addr%

REM

Statement indicating a remark

Syntax
REM<string>

Argument

<string> can be absolutely anything; it is ignored by BASIC. The purpose of
REMs is to annotate the program in English.

Examples

REM find the next prime
REMARKABLE COMMENT, THIS

RENUMBER REN.

Command to resequence the program line numbers

L.2-55

Syntax
RENUMBER [<integer>] [, <step>]

Arguments
See AUTO for a description.

Purpose

RENUMBER resequences the lines in the program so that the first line is
<integer> and the line numbers increase in steps of <step>. It also changes
line numbers within the program, eg after GOTOs, so that they match the new
line numbers. If a GOTO line cannot be found, the message ‘Failed at" is given.
RENUMBER needs some workspace, and if there is not enough room to
successfully change the line numbers, a RENUMBER space error is generated.

Examples

RENUMBER
RENUMBER 1080,20

REPEAT REP.
Statement marking start of a REPEAT ... UNTIL loop

Syntax
REPEAT

Purpose

The statements following REPEAT will be repeatedly executed until the
condition following the matching UNTIL evaluates to FALSE. The statements
may occur over several program lines, or may all be on the same line separated
by colons. The second approach is useful in immediate’ statements.

Examples

REPEAT UNTIL NOT INKEY—99 : REM wait for SPACE to be released
REPEAT aX=a%+1:c%=c¥% DIV 2:UNTIL c%=@

REPORT REPO.

Statement printing the message of the last error encountered

Syntax
REPORT

L.2-56

